The Diverse Structures and Functions of Surfactant Proteins.

Trends Biochem Sci

School of Life Sciences, University of Dundee, Dundee, UK. Electronic address:

Published: July 2016

Surface tension at liquid-air interfaces is a major barrier that needs to be surmounted by a wide range of organisms; surfactant and interfacially active proteins have evolved for this purpose. Although these proteins are essential for a variety of biological processes, our understanding of how they elicit their function has been limited. However, with the recent determination of high-resolution 3D structures of several examples, we have gained insight into the distinct shapes and mechanisms that have evolved to confer interfacial activity. It is now a matter of harnessing this information, and these systems, for biotechnological purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929970PMC
http://dx.doi.org/10.1016/j.tibs.2016.04.009DOI Listing

Publication Analysis

Top Keywords

diverse structures
4
structures functions
4
functions surfactant
4
surfactant proteins
4
proteins surface
4
surface tension
4
tension liquid-air
4
liquid-air interfaces
4
interfaces major
4
major barrier
4

Similar Publications

Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Adv Sci (Weinh)

January 2025

Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.

View Article and Find Full Text PDF

The reasonable design of advanced anode materials for electrochemical energy storage (EES) devices is crucial in expediting the progress of renewable energy technologies. NbO has attracted increasing research attention as an anode candidate. Defect engineering is regarded as a feasible approach to modulate the local atomic configurations within NbO.

View Article and Find Full Text PDF

In recent times, chemical looping offered a sustainable alternative for upgrading light hydrocarbons into olefins. Olefins are valuable platform chemicals that are utilized for diverse applications. To close the wide shortfall in their global supply, intensified efforts are ongoing to develop on-purpose production technologies.

View Article and Find Full Text PDF

Two Steps Li Ion Storage Mechanism in Ruddlesden-Popper LiLaTiO.

Adv Sci (Weinh)

January 2025

Emerging Materials R&D Division, Korea Institute of Ceramic Engineering & Technology, Jinju, Gyeongnam, 52851, Republic of Korea.

Innovative anode materials are essential for achieving high-energy-density lithium-ion batteries (LIBs) with longer lifetimes. Thus far, only a few studies have explored the use of layered perovskite structures as LIB anode materials. In this study, the study demonstrates the performance and charge/discharge mechanism of the previously undefined Ruddlesden-Popper Li₂La₂Ti₃O₁₀ (RPLLTO) as an anode material for LIBs.

View Article and Find Full Text PDF

Effect of microbial fertilizers on soil microbial community structure in rotating and continuous cropping .

Front Plant Sci

January 2025

Science and Technology R&D Department, China Chinese Medicine Co., LTD, Beijing, China.

Introduction: is a perennial medicinal plant. It's generally cultivated for three years, and should avoid long-term continuous cultivation. However, unreasonable crop rotation and extensive fertilization are common in cultivation, which leads to the imbalance of soil microflora structure, and the obstacle of continuous cropping are becoming increasingly serious.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!