Effect of Cardiac Resynchronization Therapy on Left Atrial Size and Function as Expressed by Speckle Tracking 2-Dimensional Strain.

Am J Cardiol

Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Published: July 2016

Changes in left atrial (LA) strain in patients treated with cardiac resynchronization therapy (CRT) remain not entirely explored. We prospectively evaluated long-term changes in LA size and function and their relation with left ventricular (LV) reverse remodeling and noninvasive hemodynamic variables in patients treated with CRT by 2-dimensional speckle tracking echocardiography. Thirty patients (62 ± 11 years, 63% men) underwent 2-dimensional speckle tracking echocardiography before implant and after 12 months. LA area, global and regional LA strains, LV ejection fraction (LVEF) and longitudinal strain, mitral regurgitation (MR), and diastolic variables were evaluated. At 12 months, CRT responders (60%) exhibited an increase in LA strain (11.4 ± 6.5% vs 16.5 ± 7.9%, p <0.001) and a reduction in LA area (p = 0.002), which were associated with an improvement in MR, E/E' ratio, LVEF, and LV longitudinal strain. In nonresponders, a worsening in LA strain (11.4 ± 6.8% vs 8.7 ± 4.6%, p = 0.017) and LA area (p = 0.002) occurred in parallel with an increase in E/E', whereas LVEF and LV longitudinal strain were unchanged. In conclusion, over long-term follow-up, LA size and strain improved in CRT responders, while worsening in nonresponders. Changes in LV function, filling pressures, and MR seem to be related to LA reverse remodeling, giving a feedback loop.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjcard.2016.04.042DOI Listing

Publication Analysis

Top Keywords

cardiac resynchronization
8
resynchronization therapy
8
left atrial
8
size function
8
speckle tracking
8
patients treated
8
therapy left
4
atrial size
4
function expressed
4
expressed speckle
4

Similar Publications

Permanent Left Bundle Branch Area DF-4 Defibrillator Lead Implantation-Feasibility, Procedural Caveats, Safety, and Follow-Up.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiac Electrophysiology and Pacing, Arrhythmia Heart Failure Academy, The Madras Medical Mission, Chennai, Tamil Nadu, India.

Introduction: Permanent implantation of a DF-4 implantable cardiac defibrillator (ICD) lead in the left bundle branch area (LBBA-ICD) is the next paradigm in amalgamating cardiac resynchronization therapy (CRT) and defibrillation. We systematically investigated feasibility/success rate, procedural caveats, and complications associated with a permanent DF-4 LBBA ICD implant and pertinent data at short-term follow-up.

Methods: We prospectively attempted implantation of 7 Fr Durata (Abbott, Chicago, IL, USA) single coil DF-4 ICD lead at the LBBA using a fixed-curve non-deflectable CPS locator delivery sheath.

View Article and Find Full Text PDF

Objectives: Cardiac resynchronization therapy (CRT) is an intervention for heart failure patients with reduced ejection fraction who exhibit specific electrocardiographic indicators of electrical dyssynchrony. However, electrical dyssynchrony does not universally correspond to left ventricular mechanical dyssynchrony (LVMD). Gated single-photon emission computed tomography (SPECT) myocardial perfusion allows for the assessment of LVMD, yet its role in the CRT selection process remains debated.

View Article and Find Full Text PDF

More than 1 million permanent pacemakers are implanted worldwide each year, half of which are in patients with high-grade atrioventricular block. Pacemakers provide adequate frequency support in the initial stage, but traditional right ventricular (RV) pacing may lead to or aggravate left ventricular dysfunction and arrhythmia. Several potential risk factors for heart failure and arrhythmias after pacemaker surgery have been identified, but their occurrence remains difficult to predict clinically.

View Article and Find Full Text PDF

The integrative physiology of the left ventricle and systemic circulation is fundamental to our understanding of advanced heart failure and cardiogenic shock. In simplest terms, any increase in aortic stiffness increases the vascular afterload presented to the failing left ventricle. The net effect is increased myocardial oxygen demand and reduced coronary perfusion pressure, thereby further deteriorating contractile function.

View Article and Find Full Text PDF

Objective: To evaluate systematically the feasibility and effectiveness of His Bundle Pacing (HBP) for cardiac resynchronization therapy.

Methods: A comprehensive search was conducted in PubMed, EMbase, WOS, Cochrane Library, Medline, and SinoMed for studies published between December 2003 and December 2023. Primary clinical outcomes included implantation success, QRS wave duration, pacing threshold, left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), New York Heart Association (NYHA) cardiac function class, and complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!