Arrhythmogenic effect of androgens on the rat heart.

J Physiol Sci

Centro de Estudios en Salud y Medio Ambiente (CESyMA), Escuela de Ciencia y Tecnología (ECyT), Universidad Nacional de General San Martín (UNSAM), Av. Gral. Paz 5445, INTI, Edificio 23, 1650, San Martin, Buenos Aires, Argentina.

Published: January 2017

In most species androgens shorten the cardiac action potential and reduce the risk of afterdepolarizations. Despite the central role of the rat model in physiological studies, the effects of androgens on the rat heart are still inconclusive. We therefore performed electrophysiological studies on the perfused rat right ventricular free wall. We found a correlation between androgenic activity and a propensity to generate ventricular ectopic action potentials. We also found that the testosterone treatment increased action potential duration at 90 % of repolarization (APD90), while androgenic inhibition increased the time to peak and decreased APD90. We observed that the voltage-gated potassium channel Kv4.3 and the bi-directional membrane ion transporter NCX in the rat myocardium were regulated by androgenic hormones. One possible explanation for these findings is that due to the expression of specific ion channels in the rat myocardium, the action potential response to its hormonal background is different from those described in other experimental models. Our results indicate that androgenic control of NCX expression plays a key role in determining arrhythmogenicity in the rat heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717165PMC
http://dx.doi.org/10.1007/s12576-016-0459-yDOI Listing

Publication Analysis

Top Keywords

rat heart
12
action potential
12
androgens rat
8
rat myocardium
8
rat
7
arrhythmogenic androgens
4
heart species
4
species androgens
4
androgens shorten
4
shorten cardiac
4

Similar Publications

Background: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.

View Article and Find Full Text PDF

Absence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model ( ) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old.

View Article and Find Full Text PDF

Alcohol abuse can lead to significant cardiac injury, resulting in Alcoholic heart disease (AHD). The interplay between cardiac health and gut microbiota composition in the context of alcohol consumption is not well understood. Shen Song Yang Xin (SSYX) capsule and amiodarone are common drugs used to treat alcoholic heart disease, but little is known about their microbial regulatory mechanisms in alcoholic heart disease.

View Article and Find Full Text PDF

Inflammation and oxidative stress processes in induced precocious puberty in rats.

Heliyon

December 2024

Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, 400012, Cluj-Napoca, Romania.

This study aimed to assess the influence of different types of blue light sources on male and female rats' puberty onset, the morphologic-induced alterations in reproductive organs tissues, the impact on inflammation and oxidative stress markers, anxiety levels, and mathematical modeling for tissue data interpretation. Four groups of sixteen rats each (8 females and 8 males/group) were investigated: three groups were exposed to blue light from mobile phones (MP), computer screens (PC), or LED lamps (LED) versus the control group (CTRL). The rats in the CTRL group had no exposure while the other groups were exposed for 30 days to the blue light of MP, PC, and LED for 16 h per day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!