Semiconducting indium sulfide (In2S3) has recently attracted considerable attention as a buffer material in the field of thin film photovoltaics. Compared with this growing interest, however, detailed characterizations of the crystal structure of this material are rather scarce and controversial. In order to close this gap, we have carried out a reinvestigation of the crystal structure of this material with an in situ X-ray diffraction study as a function of temperature using monochromatic synchrotron radiation. For the purpose of this study, high quality polycrystalline In2S3 material with nominally stoichiometric composition was synthesized at high temperatures. We found three modifications of In2S3 in the temperature range between 300 and 1300 K, with structural phase transitions at temperatures of 717 K and above 1049 K. By Rietveld refinement we extracted the crystal structure data and the temperature coefficients of the lattice constants for all three phases, including a high-temperature trigonal γ-In2S3 modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886618PMC
http://dx.doi.org/10.1107/S2052520616007058DOI Listing

Publication Analysis

Top Keywords

crystal structure
12
structure material
8
structure
4
structure reinvestigation
4
reinvestigation α-
4
α- β-
4
β- γ-in2s3
4
γ-in2s3 semiconducting
4
semiconducting indium
4
indium sulfide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!