The leaching behavior of Pb and Zn from lead blast furnace (LBF) and imperial smelting furnace (ISF) slags sampled in the North of France was studied as a function of pHs and under two atmospheres (open air and nitrogen). The leaching of major elements from the slags was monitored as a function of pH (4, 5.5, 7, 8.5 and 10) under both atmospheres for different slag-water interaction times (1 day and 9 days). The leaching results were coupled with a geochemical model; Visual MINTEQ version 3.0, and a detailed morphological and mineralogical analysis was performed on the leached slags by scanning and transmission electron microscopy (SEM and TEM). Significant amounts of Ca, Fe and Zn were released under acidic conditions (pH 4) with a decrease towards the neutral to alkaline conditions (pH 7 and 10) for both LBF and ISF slags. On the other hand, Fe leachability was limited at neutral to alkaline pH for both slags. The concentrations of all elements increased gradually after 216 h compared to initial 24 h of leaching period. The presence of oxygen under open-air atmosphere not only enhanced oxidative weathering but also encouraged formation of secondary oxide and carbonate phases. Formation of carbonates and clay minerals was suggested by Visual MINTEQ which was further confirmed by SEM & TEM. The hydration and partial dissolution of hardystonite, as well as the destabilization of amorphous glassy matrix mainly contributed to the release of major elements, whereas the spinel related oxides were resistant against pH changes and atmospheres within the time frame concerned for both LBF and ISF slags. The total amount of Pb leached out at pH 7 under both atmospheres suggested that both LBF and ISF slags are prone to weathering even at neutral environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2016.05.052 | DOI Listing |
Chemosphere
December 2020
Department of Geology, University of Zambia, School of Mines, P. O. Box 32379, Lusaka, Zambia.
The former Pb-Zn mining town of Kabwe in central Zambia is ranked amongst the worst polluted areas both in Africa and in the world. The fine dust particles from the ISF and Waelz slags deposited in Kabwe represent a health risk for the local population. Here, we combined a detailed multi-method mineralogical investigation with oral bioaccessibility testing in simulated gastric fluid (SGF; 0.
View Article and Find Full Text PDFChemosphere
March 2018
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, UMR 7154, CNRS, F-75005 Paris, France.
During the chemical weathering of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags, possible Zn isotopes fractionation was studied as a function of pH, atmosphere (open air vs nitrogen), and time. Bulk LBF and ISF displayed heavier signatures compared to Johnson Matthey Company (JMC) Zn standard solution (i.e.
View Article and Find Full Text PDFJ Environ Manage
September 2016
Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France.
The leaching behavior of Pb and Zn from lead blast furnace (LBF) and imperial smelting furnace (ISF) slags sampled in the North of France was studied as a function of pHs and under two atmospheres (open air and nitrogen). The leaching of major elements from the slags was monitored as a function of pH (4, 5.5, 7, 8.
View Article and Find Full Text PDFEnviron Pollut
March 2016
Department of Environmental Sciences, Macquarie University, NSW, 2109, Australia. Electronic address:
The Imperial Smelting Furnace (ISF) for producing lead and zinc simultaneously has operated on four continents and in eleven countries from the 1950's. One of the process changes that the ISF introduced was the production of a finely granulated slag waste. Although this slag contained significant amounts of residual lead (Pb) and zinc (Zn), because of its glassy nature it was considered environmentally benign.
View Article and Find Full Text PDFWaste Manag
March 2005
Ecole des Mines d'Albi, Campus Jarlard, 18013 Albi 9, France.
Characterisation of the leaching behaviour of waste-containing materials is a crucial step in the environmental assessment for reuse scenarios. In our research we applied the multi-step European methodology ENV 12-920 to the leaching assessment of road materials containing metallurgical slag. A Zn slag from an imperial smelting furnace (ISF) and a Pb slag from a lead blast furnace (LBF) are investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!