We aimed to evaluate the magnetic resonance imaging (MRI) contrast effect and delivery efficiency through the middle ear into the inner ear using novel super-paramagnetic maghemite (γ-Fe O ) nanoparticles (NPs) generated using ceric ammonium nitrate (CAN)-mediated oxidation of Fe O NPs (CAN-γ-Fe O NPs). The CAN-γ-Fe2O3 NPs, having hydrodynamic diameters of 50-60 nm and potentials of +55.2 mV, displayed super-paramagnetic behavior characterized by a saturation magnetization Ms of 75.2 emu/g NPs. The r1 and r2* relaxivity (curve slopes) values were 0.0015 and 189 mmol  s , respectively, indicating strong T2* relaxation maghemite-based NPs. The CAN-γ-Fe O NPs were stable in the 7.0 T magnetic field. At 3 h after the tympanic medial wall administration, the NPs had significantly located to the cochlea and vestibule. The signal started to recover at 6 h in the ipsilateral cochlea and by 2 d in the vestibule post-administration. There was no difference in the signal intensity between the left and right ears on the 14th d. Prussian blue staining for iron demonstrated NP distribution in the inner ear tissue. The novel CAN-γ-Fe O NPs are a strong MRI T2 contrast agent and penetrated the round and oval windows and have potential application in the molecular imaging of the inner ear. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1883-1891, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.33719DOI Listing

Publication Analysis

Top Keywords

inner ear
16
can-γ-fe nps
12
nps
9
ceric ammonium
8
ammonium nitrate
8
mri contrast
8
nps can-γ-fe
8
cochlea vestibule
8
ear
5
efficient penetration
4

Similar Publications

We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.

View Article and Find Full Text PDF

Thanks to affordable 3D printers, creating complex designs like anatomically accurate dummy heads is now accessible. This study introduces dummy heads with 3D-printed skulls and silicone skins to explore crosstalk cancellation in bone conduction (BC). Crosstalk occurs when BC sounds from a transducer on one side of the head reach the cochlea on the opposite side.

View Article and Find Full Text PDF

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

A Neuron-Like Cellular Model for Severe Tinnitus Associated with Rare Variations in the ANK2 Gene.

Mol Neurobiol

January 2025

Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.

Tinnitus is the perception of sound without an external source, often associated with changes in the auditory pathway and different brain regions. Recent research revealed an overload of missense variants in the ANK2 gene in individuals with severe tinnitus. ANK2, encoding ankyrin-B, regulates axon branching and inhibits microtubule invasion.

View Article and Find Full Text PDF

Among the factors, such as emotions, that distort time perception, vestibular stimulation causes a contraction in subjective time. Unlike emotions, the intensity of vestibular stimulation can be easily and precisely modified, making it possible to study the quantitative relationship between stimulation and its effect on time perception. We hypothesized that the contraction of subjective time would increase with the vestibular stimulation magnitude.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!