Histone deacetylase (EC 3.5.1.98 - HDAC) is an amidohydrolase involved in deacetylating the histone lysine residues for chromatin remodeling and thus plays a vital role in the epigenetic regulation of gene expression. Due to its aberrant activity and over expression in several forms of cancer, HDAC is considered as a potential anticancer drug target. HDAC inhibitors alter the acetylation status of histone and non-histone proteins to regulate various cellular events such as cell survival, differentiation and apoptosis in tumor cells and thus exhibit anticancer activity. Till date, four drugs, namely Vorinostat (SAHA), Romidepsin (FK-228), Belinostat (PXD-101) and Panobinostat (LBH-589) have been granted FDA approval for cancer and several HDAC inhibitors are currently in various phases of clinical trials, either as monotherapy and/or in combination with existing/novel anticancer agents. Regardless of this, today scientific efforts have fortified the quest for newer and novel HDAC inhibitors that show isoform selectivity. This review focuses on the chemistry of the molecules of two classes of HDAC inhibitors, namely short chain fatty acids and hydroxamic acids, investigated so far as novel therapeutic agents for cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2016.05.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!