Molecular profiling of dilated cardiomyopathy that progresses to heart failure.

JCI Insight

Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA.

Published: May 2016

Dilated cardiomyopathy (DCM) is defined by progressive functional and structural changes. We performed RNA-seq at different stages of disease to define molecular signaling in the progression from pre-DCM hearts to DCM and overt heart failure (HF) using a genetic model of DCM (phospholamban missense mutation, PLN). Pre-DCM hearts were phenotypically normal yet displayed proliferation of nonmyocytes (59% relative increase vs. WT, = 8 × 10) and activation of proinflammatory signaling with notable cardiomyocyte-specific induction of a subset of profibrotic cytokines including TGFβ2 and TGFβ3. These changes progressed through DCM and HF, resulting in substantial fibrosis (17.6% of left ventricle [LV] vs. WT, = 6 × 10). Cardiomyocytes displayed a marked shift in metabolic gene transcription: downregulation of aerobic respiration and subsequent upregulation of glucose utilization, changes coincident with attenuated expression of PPARα and PPARγ coactivators -1α (PGC1α) and -1β, and increased expression of the metabolic regulator T-box transcription factor 15 (). Comparing DCM transcriptional profiles with those in hypertrophic cardiomyopathy (HCM) revealed similar and distinct molecular mechanisms. Our data suggest that cardiomyocyte-specific cytokine expression, early fibroblast activation, and the shift in metabolic gene expression are hallmarks of cardiomyopathy progression. Notably, key components of these profibrotic and metabolic networks were disease specific and distinguish DCM from HCM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882118PMC
http://dx.doi.org/10.1172/jci.insight.86898DOI Listing

Publication Analysis

Top Keywords

dilated cardiomyopathy
8
heart failure
8
pre-dcm hearts
8
shift metabolic
8
metabolic gene
8
dcm
6
molecular profiling
4
profiling dilated
4
cardiomyopathy
4
cardiomyopathy progresses
4

Similar Publications

Cardiac manifestations of autosomal dominant polycystic kidney disease.

Eur Heart J Imaging Methods Pract

January 2025

Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland.

View Article and Find Full Text PDF

Titin truncating variants (TTNtv) are the main genetic cause of dilated cardiomyopathies (DCMs). The phenotype and prognosis of probands have been evaluated in several large cohorts. However, few data are available on intrafamilial expressivity.

View Article and Find Full Text PDF

Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.

View Article and Find Full Text PDF

Background: The angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism (rs4340) is associated with the pathogenesis of heart failure (HF). This polymorphism may contribute to a greater propensity for severe HF and excess weight.

Objective: To evaluate adiposity, cardiac function, and their association with ACE I/D polymorphism in HF patients.

View Article and Find Full Text PDF

Family Screening in Patients With Dilated and Arrhythmogenic Cardiomyopathy: The Road Toward Gene-Specific Recommendations.

Circ Genom Precis Med

January 2025

Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (S.L.V.M.S., N.J.B., M.F.G.H.M.V., V.P.M.v.E., J.A.J.V.).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!