Many viruses induce oxidative stress and cause S-glutathionylation of Cys residues of the host and viral proteins. Changes in cell functioning during viral infection may be associated with glutathionylation of a number of key proteins including Na,K-ATPase which creates a gradient of sodium and potassium ions. It was found that Na,K-ATPase α-subunit has a basal glutathionylation which is not abrogated by reducing agent. We have shown that acute hypoxia leads to increase of total glutathionylation level of Na,K-ATPase α-subunit; however, basal glutathionylation of α-subunit increases under prolonged hypoxia only. The role of basal glutathionylation in Na,K-ATPase function remains unclear. Understanding significance of basal glutathionylation is complicated by the fact that there are no X-ray structures of Na,K-ATPase with the identified glutathione molecules. We have analyzed all X-ray structures of the Na,K-ATPase α-subunit from pig kidney and found that there are a number of isolated cavities with unresolved electron density close to the relevant cysteine residues. Analysis of the structures showed that this unresolved density in the structure can be occupied by glutathione associated with cysteine residues. Here, we discuss the role of basal glutathionylation of Na,K-ATPase α-subunit and provide evidence supporting the view that this modification is cotranslational.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863110PMC
http://dx.doi.org/10.1155/2016/9092328DOI Listing

Publication Analysis

Top Keywords

basal glutathionylation
24
nak-atpase α-subunit
20
glutathionylation nak-atpase
12
nak-atpase
8
α-subunit basal
8
role basal
8
x-ray structures
8
structures nak-atpase
8
cysteine residues
8
glutathionylation
7

Similar Publications

The EF-hand calcium (Ca) sensor protein S100A1 combines inotropic with antiarrhythmic potency in cardiomyocytes (CMs). Oxidative posttranslational modification (ox-PTM) of S100A1's conserved, single-cysteine residue (C85) via reactive nitrogen species (i.e.

View Article and Find Full Text PDF

The oncogene and drug metabolism enzyme glutathione S-transferase P (GSTP) is also a GSH-dependent chaperone of signal transduction and transcriptional proteins with key role in liver carcinogenesis. In this study, we explored this role of GSTP in hepatocellular carcinoma (HCC) investigating the possible interaction of this protein with one of its transcription factor and metronome of the cancer cell redox, namely the nuclear factor erythroid 2-related factor 2 (Nrf2). Expression, cellular distribution, and function as glutathionylation factor of GSTP1-1 isoform were investigated in the mouse model of N-nitrosodiethylamine (DEN)-induced HCC and in vitro in human HCC cell lines.

View Article and Find Full Text PDF

S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems.

Antioxidants (Basel)

September 2022

Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India.

S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins.

View Article and Find Full Text PDF

Background: Interleukin-1-dependent increases in glycolysis promote allergic airways disease in mice and disruption of pyruvate kinase M2 (PKM2) activity is critical herein. Glutathione-S-transferase P (GSTP) has been implicated in asthma pathogenesis and regulates the oxidation state of proteins via S-glutathionylation. We addressed whether GSTP-dependent S-glutathionylation promotes allergic airways disease by promoting glycolytic reprogramming and whether it involves the disruption of PKM2.

View Article and Find Full Text PDF

Glycolysis is a well-known process by which metabolically active cells, such as tumor or immune cells meet their high metabolic demands. Previously, our laboratory has demonstrated that in airway epithelial cells, the pleiotropic cytokine, interleukin-1 beta (IL1B) induces glycolysis and that this contributes to allergic airway inflammation and remodeling. Activation of glycolysis is known to increase NADPH reducing equivalents generated from the pentose phosphate pathway, linking metabolic reprogramming with redox homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!