Magnetic-plasmonic core-shell nanomaterials offer a wide range of applications across science, engineering and biomedical disciplines. However, the ability to synthesize and understand magnetic-plasmonic core-shell nanoparticles with tunable sizes and shapes remains very limited. This work reports experimental and computational studies on the synthesis and properties of iron oxide-gold core-shell nanoparticles of three different shapes (sphere, popcorn and star) with controllable sizes (70 to 250 nm). The nanoparticles were synthesized via a seed-mediated growth method in which newly formed gold atoms were added onto gold-seeded iron oxide octahedrons to form gold shell. The evolution of the shell into different shapes was found to occur after the coalescence of gold seeds, which was achieved by controlling the amount of additive (silver nitrate) and reducing agent (ascorbic acid) in the growth solution. First principles calculation, together with experimental results, elucidated the intimate roles of thermodynamic and kinetic parameters in the shape-controlled synthesis. Both discrete dipole approximation calculation and experimental results showed that the nanopopcorns and nanostars exhibited red-shifted plasmon resonance compared with the nanospheres, with the nanostars giving multispectral feature. This research has made a great step further in manipulating and understanding magnetic-plasmonic hybrid nanostructures and will make important impact in many different fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882128PMC
http://dx.doi.org/10.1021/acs.jpcc.6b00875DOI Listing

Publication Analysis

Top Keywords

magnetic-plasmonic core-shell
12
core-shell nanoparticles
12
shape-controlled synthesis
8
synthesis properties
8
calculation experimental
8
size- shape-controlled
4
magnetic-plasmonic
4
properties magnetic-plasmonic
4
core-shell
4
nanoparticles
4

Similar Publications

Nanoparticles have emerged as versatile tools in the realm of thermal therapy, offering precise control and feedback mechanisms for targeted treatments. This review explores the intersection of nanotechnology and thermal therapy, focusing on the utilization of nanoparticles for image-guided interventions and temperature monitoring. Starting with an exploration of local temperature dynamics compared to whole-body responses, we delve into the landscape of nanomaterials and their pivotal role in nanomedicine.

View Article and Find Full Text PDF

Cancer is the second leading cause of death attributed to disease worldwide. Current standard detection methods often rely on a single cancer marker, which can lead to inaccurate results, including false negatives, and an inability to detect multiple cancers simultaneously. Here, we developed a multiplex method that can effectively detect and classify surface proteins associated with three distinct types of breast cancer by utilizing gap-enhanced Raman scattering nanotags and machine learning algorithm.

View Article and Find Full Text PDF

Biosensors based on core-shell nanoparticles for detecting mycotoxins in food: A review.

Food Chem

December 2023

Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Mycotoxins are toxic metabolites produced by fungi in the process of infecting agricultural products, posing serious threat to the health of human and animals. Thus, sensitive and reliable analytical techniques for mycotoxin detection are needed. Biosensors equipped with antibodies or aptamers as recognition elements and core-shell nanoparticles (NPs) for the pre-treatment and detection of mycotoxins have been extensively studied.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) has become a promising method for the detection of contaminants or biomolecules in aqueous media. The low interference of water, the unique spectral fingerprint, and the development of portable and handheld equipment for in situ measurements underpin its predominance among other spectroscopic techniques. Among the SERS nanoparticle substrates, those composed of plasmonic and magnetic components are prominent examples of versatility and efficiency.

View Article and Find Full Text PDF

Here, we synthesize a Au@FeO core@shell system with a highly uniform unprecedented star-like shell morphology with combined plasmonic and magnetic properties. An advanced electron microscopy characterization allows assessing the multifaceted nature of the Au core and its role in the growth of the peculiar epitaxial star-like shell with excellent crystallinity and homogeneity. Magnetometry and magneto-optical spectroscopy revealed a pure magnetite shell, with a superior saturation magnetization compared to similar Au@FeO heterostructures reported in the literature, which is ascribed to the star-like morphology, as well as to the large thickness of the shell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!