For the reconstruction of Alpine tectonics of the Eastern Alps, the evaporitic Permian to Lower Triassic Haselgebirge Formation plays a key role in (1) the origin of Haselgebirge bearing nappes, (2) the inclusion of magmatic and metamorphic rocks revealing tectonic processes not preserved in other units, and (3) the debated mode of emplacement of the nappes, namely gravity-driven or tectonic. Within the Moosegg quarry of the central Northern Calcareous Alps gypsum/anhydrite bodies are tectonically mixed with lenses of sedimentary rocks and decimeter- to meter-sized tectonic clasts of plutonic and subvolcanic rocks and rare metamorphics. We examined various types of (1) widespread biotite-diorite, meta-syenite, (2) meta-dolerite and rare ultramafic rocks (serpentinite, pyroxenite) as well as (3) rare metamorphic banded meta-psammitic schists and meta-doleritic blueschists. The apparent Ar/Ar biotite ages from three biotite-diorite, meta-dolerite and meta-doleritic blueschist samples with variable composition and fabrics range from 248 to 270 Ma (e.g., 251.2 ± 1.1 Ma) indicating a Permian age of cooling after magma crystallisation or metamorphism. The chemical composition of biotite-diorite and meta-syenite indicates an alkaline trend interpreted to represent a rift-related magmatic suite. These, as well as Permian to Jurassic sedimentary rocks, were incorporated during Cretaceous nappe emplacement forming the sulphatic Haselgebirge mélange. The scattered Ar/Ar white mica ages of a meta-doleritic blueschist (of N-MORB origin) and banded meta-psammitic schist are ca. 349 and 378 Ma, respectively, proving the Variscan age of pressure-dominated metamorphism. These ages are similar to detrital white mica ages reported from the underlying Rossfeld Formations, indicating a close source-sink relationship. According to our new data, the Haselgebirge bearing nappe was transported over the Lower Cretaceous Rossfeld Formations, which include many clasts derived from the Haselgebirge Formation and its exotic blocks deposited in front of the incoming nappe comprising the Haselgebirge Formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872525PMC
http://dx.doi.org/10.1016/j.tecto.2012.10.016DOI Listing

Publication Analysis

Top Keywords

haselgebirge formation
12
central northern
8
northern calcareous
8
calcareous alps
8
permian lower
8
lower triassic
8
haselgebirge bearing
8
sedimentary rocks
8
biotite-diorite meta-syenite
8
banded meta-psammitic
8

Similar Publications

Dating of polyhalite: a difficult Ar/Ar dating tool of diagenetic to very low-grade metamorphic processes.

Int J Earth Sci

July 2022

Department of Geography and Geology, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.

Unlabelled: Halite already deforms at surface temperatures. A valuable universal dating tool to constrain the timing of sedimentary, diagenetic, or deformational structures is still missing. The evaporite mineral polyhalite can be dated by the Ar/Ar method.

View Article and Find Full Text PDF

Based on old detailed mining maps and own observations in the Hallstatt salt mine, we reinterpret the structure of the Hallstatt evaporite body of the Upper Permian to Lower Triassic Haselgebirge Fm. within the Northern Calcareous Alps (NCA). The Haselgebirge Fm.

View Article and Find Full Text PDF

For the reconstruction of Alpine tectonics of the Eastern Alps, the evaporitic Permian to Lower Triassic Haselgebirge Formation plays a key role in (1) the origin of Haselgebirge bearing nappes, (2) the inclusion of magmatic and metamorphic rocks revealing tectonic processes not preserved in other units, and (3) the debated mode of emplacement of the nappes, namely gravity-driven or tectonic. Within the Moosegg quarry of the central Northern Calcareous Alps gypsum/anhydrite bodies are tectonically mixed with lenses of sedimentary rocks and decimeter- to meter-sized tectonic clasts of plutonic and subvolcanic rocks and rare metamorphics. We examined various types of (1) widespread biotite-diorite, meta-syenite, (2) meta-dolerite and rare ultramafic rocks (serpentinite, pyroxenite) as well as (3) rare metamorphic banded meta-psammitic schists and meta-doleritic blueschists.

View Article and Find Full Text PDF

The Alpine Haselgebirge Formation represents an Upper Permian to Lower Triassic evaporitic rift succession of the Northern Calcareous Alps (Eastern Alps). Although the rocksalt body deposits are highly tectonised, consisting mainly of protocataclasites and mylonites of halite and mudrock, the early diagenetic history can be established from non-tectonised mudrock bodies: Cm-sized euhedral halite hopper crystals formed as displacive cubes within mud just during shallow burial. The crystals were deformed by subsequent compaction.

View Article and Find Full Text PDF

Polyhalite microfabrics in an Alpine evaporite mélange: Hallstatt, Eastern Alps.

J Struct Geol

January 2013

Department Geography and Geology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.

In the Hallstatt salt mine (Austria), polyhalite rocks occur in 0.5-1 m thick and several metre long tectonic lenses within the protocataclasite to protomylonite matrix of the Alpine Haselgebirge Fm..

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!