The protein kinases Mst1 and Mst2 have tumor suppressor activity, but their mode of regulation is not well established. Mst1 and Mst2 are broadly expressed and may have certain overlapping functions in mammals, as deletions of both Mst1 and Mst2 together are required for tumorigenesis in mouse models [1-3]. These kinases act via a three-component signaling cascade comprising Mst1 and Mst2, the protein kinases Lats1 and Lats2, and the transcriptional coactivators Yap and Taz [4-6]. Mst1 and Mst2 contain C-terminal SARAH domains that mediate their homodimerization as well as heterodimerization with other SARAH domain-containing proteins, which may regulate Mst1/Mst2 activity. Here we show that, in addition to forming homodimers, Mst1 and Mst2 heterodimerize in cells, this interaction is mediated by their SARAH domains and is favored over homodimers, and these heterodimers have much-reduced protein kinase activity compared to Mst1 or Mst2 homodimers. Mst1/Mst2 heterodimerization is strongly promoted by oncogenic H-ras, and this effect requires activation of the Erk pathway. Cells lacking Mst1, in which Mst1/Mst2 heterodimers are not possible, are resistant to H-ras-mediated transformation and maintain active hippo pathway signaling compared to wild-type cells or cells lacking both Mst1 and Mst2. Our results suggest that H-ras, via an Erk-dependent mechanism, downregulates Mst1/Mst2 activity by inducing the formation of inactive Mst1/Mst2 heterodimers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915977PMC
http://dx.doi.org/10.1016/j.cub.2016.04.027DOI Listing

Publication Analysis

Top Keywords

mst1 mst2
32
mst1
9
hippo pathway
8
mst1/mst2 heterodimerization
8
protein kinases
8
mst2
8
sarah domains
8
mst1/mst2 activity
8
cells lacking
8
lacking mst1
8

Similar Publications

Background: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a fatal congenital lung disorder strongly associated with genomic alterations in the Forkhead box F1 (FOXF1) gene and its regulatory region. However, little is known about how FOXF1 genomic alterations cause ACD/MPV and what molecular mechanisms are affected by these mutations. Therefore, the effect of ACD/MPV patient-specific mutations in the FOXF1 gene on the molecular function of FOXF1 was studied.

View Article and Find Full Text PDF

Hippo cooperates with p53 to regulate lung airway mucous cell metaplasia.

Dis Model Mech

November 2024

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Inner Mongolia Research Institute, Shenzhen Research Institute, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Airway mucous cell metaplasia is a significant feature of many chronic airway diseases, such as chronic obstructive pulmonary disease, cystic fibrosis and asthma. However, the mechanisms underlying this process remain poorly understood. Here, we employed in vivo mouse genetic models to demonstrate that Hippo and p53 (encoded by Trp53) cooperate to modulate the differentiation of club cells into goblet cells.

View Article and Find Full Text PDF

The protein kinases DYRK1A and DYRK1B are pivotal regulators of cell cycle progression by promoting cell cycle exit into quiescence. DYRK1B appears to play a more important role in cancer cell quiescence than DYRK1A, as evidenced by its overexpression or copy number variations in human tumour samples. Nonetheless, the stimuli driving DYRK1B upregulation and the potential divergence in expression patterns between DYRK1A and DYRK1B remain largely elusive.

View Article and Find Full Text PDF

Macrophages have been recognized as pivotal players in the progression of MASLD/MASH. However, the molecular mechanisms underlying their multifaceted functions in the disease remain to be further clarified. In the current study, we developed a new mouse model with YAP activation in macrophages to delineate the effect and mechanism of YAP signaling in the pathogenesis of MASLD/MASH.

View Article and Find Full Text PDF

Mammalian Ste-20-like Kinases 1 and 2 (MST1/2) are core serine-threonine kinases of the Hippo pathway regulating several cellular processes, including cell cycle arrest and cell death. Here, we discovered a novel alternative splicing variant of the MST2 encoding gene, STK3, in malignant cells and tumor datasets. This variant, named STK3 or MST2 (for mRNA or protein, respectively), resulted from the skipping of exon 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!