Microbial Synthesis of 5-Aminolevulinic Acid and Its Coproduction with Polyhydroxybutyrate.

ACS Synth Biol

Peking-Tsinghua Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China.

Published: November 2016

5-Aminolevulinic acid (ALA), an important cell metabolic intermediate useful for cancer treatments or plant growth regulator, was produced by recombinant Escherichia coli expressing the codon optimized mitochondrial 5-aminolevulinic acid synthase (EC: 2.3.1.37, hem1) from Saccharomyces cerevisiae controlled via the plasmid encoding T7 expression system with a T7 RNA polymerase. When a more efficient autoinduced expression approach free of IPTG was applied, the recombinant containing antibiotic-free stabilized plasmid was able to produce 3.6 g/L extracellular ALA in shake flask studies under optimized temperature. A recombinant E. coli expressing synthesis pathways of poly-3-hydroxybutyrate (PHB) and ALA resulted in coproduction of 43% PHB in the cell dry weights and 1.6 g/L extracellular ALA, leading to further reduction on ALA cost as two products were harvested both intracellularly and extracellularly. This was the first study on coproduction of extracellular ALA and intracellular PHB for improving bioprocessing efficiency. The cost of ALA production could be further reduced by employing a Halomonas spp. TD01 able to grow and produce ALA and PHB under continuous and unsterile conditions even though ALA had the highest titer of only 0.7 g/L at the present time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.6b00105DOI Listing

Publication Analysis

Top Keywords

5-aminolevulinic acid
12
extracellular ala
12
ala
9
coli expressing
8
g/l extracellular
8
microbial synthesis
4
synthesis 5-aminolevulinic
4
acid coproduction
4
coproduction polyhydroxybutyrate
4
polyhydroxybutyrate 5-aminolevulinic
4

Similar Publications

p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.

View Article and Find Full Text PDF

Analysis of the effect of ALA-PDT on macrophages in footpad model of mice infected with based on single-cell sequencing.

Open Med (Wars)

January 2025

Department of Dermatology and Venereology, The Third Affiliated Hospital, Southern Medical University, 183 West Zhongshan Road, Guangzhou, China.

Chromoblastomycosis (CBM) is a chronic neglected fungal disease that causes serious damage to the physical and mental health of patients. 5-Aminolevulinic acid photodynamic therapy (ALA-PDT) has garnered significant attention in the recent era for the treatment of CBM and has exhibited promising effects in several clinical case reports. We established a mice footpad infection model with and analyzed the impact of PDT treatment on the immune response of macrophages using single-cell sequencing.

View Article and Find Full Text PDF

Objective: To analyze the clinical application value of CO laser combined with 5-aminolevulinic acid photodynamic therapy for periungual and plantar warts.

Methods: Data from patients with periungual and plantar warts treated at Qingpu branch of Zhongshan Hospital, Fudan University between August 2022 and January 2024 were retrospectively analyzed. After screening based on inclusion and exclusion criteria, 96 patients were included and categorized into two groups according to their treatment regimens: a combination group (n=50, receiving CO laser therapy and 5-aminolevulinic acid photodynamic therapy) and a control group (n=46, undergoing CO laser treatment alone).

View Article and Find Full Text PDF

Hyaluronic acid (HA) is a popular surface modifier in targeted cancer delivery due to its receptor-binding abilities. However, HA alone faces limitations in lipid solubility, biocompatibility, and cell internalization, making it less effective as a standalone delivery system. This comprehensive study aimed to explore a dynamic landscape of complexation in HA-based nanoparticles in cancer therapy, examining diverse aspects from influential modifiers to emerging trends in cancer diagnostics.

View Article and Find Full Text PDF

Inhibition of the invasive plant Ambrosia trifida by Sigesbeckia glabrescens extracts.

Ecotoxicol Environ Saf

January 2025

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida, so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!