If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2016.04.009 | DOI Listing |
Eur J Appl Physiol
December 2024
Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), 08038, Barcelona, Spain.
Purpose: The aim of this study was to determine whether a soccer match affects the rapid force-generating capacity of the hamstring muscles, given their key role in both horizontal ground reaction force production during sprint biomechanics, and in the deceleration of the shank during the late swing phase, where rapid force production is essential owing to time constraints. Therefore, the research objective was to determine soccer match-induced hamstrings residual fatigue and recovery through rate of torque development (RTD) and associated biochemical parameters.
Methods: The recovery kinetics of hamstrings RTD metrics by the 90°:20° test, together with serum biomarkers (creatine kinase, mitochondrial creatine kinase, transaminases, malondialdehyde, irisin), were assessed in 19 male, regional first-division soccer players (age = 20.
SLAS Technol
December 2024
Integrated Genomic Services, Research Department, Sidra Medicine, Doha, Qatar. Electronic address:
Quantitative PCR (qPCR) is a technique commonly employed in laboratories and core facilities. In our previous study, we had shown the possibility to automate steps in a panel-specific gene expression workflow by pairing Mosquito HV with BioMark HD. Here we aimed to automate the full workflow and explore miniaturization capabilities.
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA. Electronic address:
Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to oxaloacetate which serves as an important anaplerotic reaction to replenish citric acid cycle intermediates. In most organisms, the PC-catalyzed reaction is allosterically activated by acetyl-coenzyme A. It has previously been reported that vertebrate PC can catalyze the hydrolysis of acetyl-CoA, offering a potential means for the enzyme to attenuate its allosteric activation.
View Article and Find Full Text PDFInt J Hyg Environ Health
December 2024
Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil.
Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Toronto - St George Campus: University of Toronto, Department of Electrical and Computer Engineering, CANADA.
The electrochemical reduction of CO2 to CH4 is promising for carbon neutrality and renewable energy storage but confronts low CH4 selectivity, especially at high current densities. The key challenge lies in promoting *CO intermediate and *H coupling while minimizing side reactions including C-C coupling or H-H coupling, which is particularly difficult at high current density due to abundant intermediates. Here we report a cooperative strategy to address this challenge using Cu-based catalysts comprising Cu-N coordination polymer and CuO component that can simultaneously manage the key intermediates *CO and *H.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!