Krüppel-like Factor 4 Modulates Development of BMI1(+) Intestinal Stem Cell-Derived Lineage Following γ-Radiation-Induced Gut Injury in Mice.

Stem Cell Reports

Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook University Medical Center, HSC T-16, Room 020, Stony Brook, NY 11794-8160, USA. Electronic address:

Published: June 2016

In response to ionizing radiation-induced injury, the normally quiescent intestinal stem cells marked by BMI1 participate in the regenerative response. Previously, we established a protective role for Krüppel-like factor 4 (KLF4) in the intestinal epithelium where it reduces senescence, apoptosis, and crypt atrophy following γ-radiation-induced gut injury. We also described a pro-proliferative function for KLF4 during the regenerative phase post irradiation. In the current study, using a mouse model in which Klf4 is deleted from quiescent BMI1(+) intestinal stem cells, we observed increased proliferation from the BMI1(+) lineage during homeostasis. In contrast, following irradiation, Bmi1-specific Klf4 deletion leads to decreased expansion of the BMI1(+) lineage due to a combination of reduced proliferation and increased apoptosis. Our results support a critical role for KLF4 in modulating BMI1(+) intestinal stem cell fate in both homeostasis and the regenerative response to radiation injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911500PMC
http://dx.doi.org/10.1016/j.stemcr.2016.04.014DOI Listing

Publication Analysis

Top Keywords

intestinal stem
16
bmi1+ intestinal
12
krüppel-like factor
8
γ-radiation-induced gut
8
gut injury
8
stem cells
8
regenerative response
8
bmi1+ lineage
8
bmi1+
5
intestinal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!