1. Focal electrographic seizures arose in the CA1 region of rat hippocampal slices bathed in elevated (8.5 mM) external potassium [( K+]o). High [K+]o also induced spontaneous interictal bursts that originated in area CA3 and propagated to CA1. To examine the contribution to electrographic seizure initiation of excitatory mechanisms that are influenced by extracellular volume, we studied the effect of hyperosmotic expansion of interstitial volume on seizure occurrence, interictal bursts, and excitatory synaptic transmission. The tissue electrical resistance was also measured leading up to and during seizures. 2. Media made 5-30 mosmol/kg hyperosmotic by addition of agents restricted to the extracellular space (mannitol, sucrose, raffinose, L-glucose, dextran) rapidly and reversibly abolished [K+]o-induced spontaneous CA1 seizures in 86% of slices tested. However, similar increases in osmolality effected by agents that access the intracellular compartment (D-glucose, glycerol) did not influence electrographic seizure occurrence. Hyperosmotic changes with plasma membrane impermeable compounds, but not permeable compounds, produced significant concentration-dependent decreases (1-10%) in the electrical resistance of CA1 stratum pyramidale. Because tissue resistance is proportional to extracellular volume, these results suggest that hyperosmotic suppression of electrographic seizures is associated with expansion of the extracellular space in hippocampal slices. 3. Measurement of electrical resistance of the CA1 stratum pyramidale during spreading depression and electrographic seizure revealed an increase in tissue resistance to 122% and 108% of control, respectively. Furthermore, a slight (approximately 2%) but significant increase in electrical resistance gradually occurred over the 20 s immediately preceding seizure generation. The observed increase in tissue resistance suggests extracellular space is decreased during these events. 4. Hyperosmolality did not alter CA3 interictal burst frequency. However, burst intensity, estimated from the total length of the burst waveform, was significantly reduced in both the CA3 (83% control) and CA1 region (67% control) when osmotic changes were imposed by plasma membrane impermeant compounds. Additionally, media made hypoosmotic by removal of 7.5 mM NaCl reversibly increased burst intensity. 5. High [K+]o potentiated excitatory synaptic transmission and excitatory postsynaptic potential (EPSP) spike coupling.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1989.61.5.927 | DOI Listing |
Oncol Res
January 2025
Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland.
Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors, angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Bone and Soft Tissue Tumors and Melanoma, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, China.
Objectives: Melanoma is a highly aggressive and metastatic form of cancer, and the role of exosomal microRNAs (miRNAs) in its progression remains largely unexplored. This study aimed to investigate the effects of melanoma cell-derived exosomal miR-424-5p on angiogenesis and its underlying mechanisms.
Methods: Exosomes were isolated from melanoma cell lines A375 and A2058, and their effects on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were examined.
Oncol Res
January 2025
Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
Objective: The prognosis for severe asthma is poor, and the current treatment options are limited. The methyl-CpG binding domain protein 2 (MBD2) participates in neutrophil-mediated severe asthma through epigenetic regulation. Neutrophil extracellular traps (NETs) play a critical role in the pathogenesis of severe asthma.
View Article and Find Full Text PDFClin Transl Med
February 2025
The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China.
To investigate the potential mechanisms underlying neutrophil extracellular traps (NETs) confer ferroptosis resistance and CD8(+) T cell inhibition in lung adenocarcinoma (LUAD). By the intravenous injection of LLC cells into the tail vein, a LUAD mouse model was created. Phorbol-12-myristate-13-acetate (PMA) stimulated neutrophils to facilitate NETs formation and combined with NETs inhibitor DNase I to explore NETs mechanism on LLC cell proliferation, migration, ferroptosis resistance, and CD8(+) T cell activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!