Novel, natural abundance metal disulfide targets were irradiated for 1h with a 10µA proton beam in a small, medical cyclotron. Osmium disulfide was synthesized by simple distillation and precipitation methods while MoS2 and WS2 were commercially available. The targets dissolved under mild conditions and were analyzed by γ-spectroscopy. Production rates and potential applications are discussed, including target recovery and recycling schemes for OsS2 and WS2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2016.05.024DOI Listing

Publication Analysis

Top Keywords

metal disulfide
8
disulfide targets
8
mos2 ws2
8
accelerator-based production
4
production 99mtc-186re
4
99mtc-186re diagnostic-therapeutic
4
diagnostic-therapeutic pair
4
pair metal
4
targets mos2
4
ws2 oss2
4

Similar Publications

As the trajectory of developing advanced electronics is shifting towards wearable electronics, various methods for implementing flexible and bendable devices capable of conforming to curvilinear surfaces have been widely investigated. In particular, achieving high-performance and stable flexible transistors remains a significant technical challenge, as transistors are fundamental components of electronics, playing a key role in overall performance. Among the wide range of candidates for flexible transistors, two-dimensional (2D) molybdenum disulfide (MoS)-based transistors have emerged as potential solutions to address these challenges.

View Article and Find Full Text PDF

Nickel disulfide (NiS) nanoparticles are encapsulated within nitrogen and sulfur co-doped carbon nanosheets, which are grown onto carbon nanofibers to form an array structure (NiS/C@CNF), resulting in a self-supporting film. This encapsulated structure not only prevents the agglomeration of NiS nanoparticles, but also memorably buffers its volume changes during charge/discharge cycles, thereby maintaining structural integrity. The nitrogen and sulfur co-doping enhances electronic conductivity and facilitates the faster ion transport of the carbon backbone, improving the low conductivity of the NiS/C@CNF anodes.

View Article and Find Full Text PDF

The manufacturing of work parts made of powder (sintered) steels is currently widespread in industry, as it provides minimal processing allowances and high dimensional accuracy, as well as the required properties and unconventional chemical composition. At the same time, their low tensile or bending strength must be considered a serious disadvantage. In order to minimize these disadvantages, a number of strengthening technologies are used, among which is the infiltration of porous base materials with metal alloys.

View Article and Find Full Text PDF

Cytophaga is a genus of Gram-negative bacteria occurring in soil and the gut microbiome. It is closely related to pathogenic spp. that cause severe diseases in fish.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides are promising materials that not only are atomically thin but also have direct bandgaps, making them highly regarded in optics and optoelectronics. However, their photoluminescence exhibits almost random polarization at room temperature. The emission is also omnidirectional and weak due to the low quantum yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!