Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Eubacterium limosum ZL-II was described to convert secoisolariciresinol (SECO) to its demethylating product 4,4'-dihydroxyenterodiol (DHEND) under anoxic conditions. However, the reaction cascade remains unclear. Here, the O-demethylase being responsible for the conversion was identified and characterized. Nine genes encoding two methyltransferase-Is (MT-I), two corrinoid proteins (CP), two methyltransferase-IIs (MT-II), and three activating enzymes (AE) were screened, cloned, and expressed in Escherichia coli. Four of the nine predicted enzymes, including ELI_2003 (MT-I), ELI_2004 (CP), ELI_2005 (MT-II), and ELI_0370 (AE), were confirmed to constitute the O-demethylase in E. limosum ZL-II. The complete O-demethylase (combining the four components) reaction system was reconstructed in vitro. As expected, the demethylating products 3-demethyl-SECO and DHEND were both produced. During the reaction process, ELI_2003 (MT-I) initially catalyzed the transfer of methyl group from SECO to the corrinoid of ELI_2004 ([Co]-CP), yielding demethylating products and [CH-Co]-CP; then ELI_2005 (MT-II) mediated the transfer of methyl group from [CH-Co]-CP to tetrahydrofolate, forming methyltetrahydrofolate and [Co]-CP. Due to the low redox potential of [Co]/[Co], [Co]-CP was oxidized to [Co]-CP immediately in vitro, and ELI_0370 (AE) was responsible for catalyzing the reduction of [Co]-CP to its active form [Co]-CP. The active-site residues in ELI_2003, ELI_2005, and ELI_0370 were subsequently determined using molecular modeling combined with site-directed mutagenesis. To our knowledge, this is the first study on the identification and characterization of a four-component O-demethylase from E. limosum ZL-II, which will facilitate the development of method to artificial synthesis of related bioactive chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-016-7626-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!