Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility, microbial protein synthesis, and blood methemoglobin. In a 4×4 Latin square design 4 lactating Danish Holstein dairy cows fitted with rumen, duodenal, and ileal cannulas were assigned to 4 calcium ammonium nitrate addition levels: control, low, medium, and high [0, 5.3, 13.6, and 21.1g of nitrate/kg of dry matter (DM), respectively]. Diets were made isonitrogenous by replacing urea. Cows were fed ad libitum and, after a 6-d period of gradual introduction of nitrate, adapted to the corn-silage-based total mixed ration (forage:concentrate ratio 50:50 on DM basis) for 16d before sampling. Digesta content from duodenum, ileum, and feces, and rumen liquid were collected, after which methane production and hydrogen emissions were measured in respiration chambers. Methane production [L/kg of dry matter intake (DMI)] linearly decreased with increasing nitrate concentrations compared with the control, corresponding to a reduction of 6, 13, and 23% for the low, medium, and high diets, respectively. Methane production was lowered with apparent efficiencies (measured methane reduction relative to potential methane reduction) of 82.3, 71.9, and 79.4% for the low, medium, and high diets, respectively. Addition of nitrate increased hydrogen emissions (L/kg of DMI) quadratically by a factor of 2.5, 3.4, and 3.0 (as L/kg of DMI) for the low, medium, and high diets, respectively, compared with the control. Blood methemoglobin levels and nitrate concentrations in milk and urine increased with increasing nitrate intake, but did not constitute a threat for animal health and human food safety. Microbial crude protein synthesis and efficiency were unaffected. Total volatile fatty acid concentration and molar proportions of acetate, butyrate, and propionate were unaffected, whereas molar proportions of formate increased. Milk yield, milk composition, DMI and digestibility of DM, organic matter, crude protein, and neutral detergent fiber in rumen, small intestine, hindgut, and total tract were unaffected by addition of nitrate. In conclusion, nitrate lowered methane production linearly with minor effects on rumen fermentation and no effects on nutrient digestibility.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2015-10691DOI Listing

Publication Analysis

Top Keywords

methane production
28
low medium
16
medium high
16
production hydrogen
12
rumen fermentation
12
nutrient digestibility
12
high diets
12
nitrate
10
methane
9
dietary nitrate
8

Similar Publications

Dynamic Methane Emissions from China's Fossil-Fuel and Food Systems: Socioeconomic Drivers and Policy Optimization Strategies.

Environ Sci Technol

January 2025

State Key Laboratory of Marine Resources Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou 570228, China.

In response to the 2023 "Action Plan for Methane Emission Control" in China, which mandates precise methane (CH) emission accounting, we developed a dynamic model to estimate CH emissions from fossil-fuel and food systems in China for the period 1990-2020. We also analyzed their socioeconomic drivers through the Logarithmic Mean Divisia Index (LMDI) model. Our analysis revealed an accelerated emission increase (850.

View Article and Find Full Text PDF

Copper-Catalysed Electrochemical CO2 Methanation via the Alloying of Single Cobalt Atoms.

Angew Chem Int Ed Engl

January 2025

UESTC: University of Electronic Science and Technology of China, School of Materials and Energy, Chengdu, Sichuan, 611731, Chengdu, CHINA.

The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60% with a partial current density of -482.

View Article and Find Full Text PDF

Interfacial Metal Oxides Stabilize Cu Oxidation States for Electrocatalytical CO2 Reduction.

ChemSusChem

January 2025

University of Electronic Science and Technology of China, School of Material and Energy, Qingshuihe Campus:No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, CHINA.

Modulating the oxidation state of copper (Cu) is crucial for enhancing the electrocatalytic CO2 reduction reaction (CO2RR), particularly for facilitating deep reductions to produce methane (CH4) or multi-carbon (C2+) products. However, Cuδ+ sites are thermodynamically unstable, fluctuating their oxidation states under reaction conditions, which complicates their functionality. Incorporating interfacial metal oxides has emerged as an effective strategy for stabilizing these oxidation states.

View Article and Find Full Text PDF

A study was conducted to assess growth performance, methane (CH) emissions, and feeding behavior of feedlot steers consuming backgrounding and finishing diets with an essential oil blend (EO), monensin (Mon), and their combination (EO + Mon). The study was structured as a 2 × 2 factorial, with two feed additive treatments (Control, EO) and two monensin treatments (no Monensin, Monensin). One hundred Angus × steers were evenly distributed across each treatment into four pens, and each dietary phase consisted of four, 28-d periods.

View Article and Find Full Text PDF

The conversion of diluted CO₂ into high-energy fuels is increasingly central to renewable energy research. This study investigates the efficacy of a Gd₂NiMnO₆ dendritic nanofibrous (DNF) photocatalyst in transforming carbon dioxide to methane through photoreduction. Gd₂NiMnO₆ DNF was found to provide active adsorption sites and control the strand dimensions for metal groups, facilitating the chemical absorption of CO₂.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!