A new acylphenol, malabaricone E (1) together with the known malabaricones A-C (2-4), maingayones A and B (5 and 6) and maingayic acid B (7) were isolated from the ethyl acetate extract of the fruits of Myristica cinnamomea King. Their structures were determined by 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Compounds 3 (1.84±0.19 and 1.76±0.21μM, respectively) and 4 (1.94±0.27 and 2.80±0.49μM, respectively) were identified as dual inhibitors, with almost equal acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibiting potentials. The Lineweaver-Burk plots of compounds 3 and 4 indicated that they were mixed-mode inhibitors. Based on the molecular docking studies, compounds 3 and 4 interacted with the peripheral anionic site (PAS), the catalytic triad and the oxyanion hole of the AChE. As for the BChE, while compound 3 interacted with the PAS, the catalytic triad and the oxyanion hole, compound 4 only interacted with the catalytic triad and the oxyanion hole.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2016.05.046 | DOI Listing |
Sci Rep
December 2024
Department of Botany, The University of Burdwan, Purba Bardhaman, 713104, West Bengal, India.
The continuous exposure of chemical pesticides in agriculture, their contamination in soil and water pose serious threat to the environment. Current study used an approach to evaluate various pesticides like Hexaconazole, Mancozeb, Pretilachlor, Organophosphate and λ-cyhalothrin degradation capability of esterase. The enzyme was isolated from Salinicoccus roseus.
View Article and Find Full Text PDFACS Catal
December 2024
Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands.
Genetically encoded noncanonical amino acids can introduce new-to-nature activation modes into enzymes. While these amino acids can act as catalysts on their own due to their inherent chemical properties, interactions with adjacent residues in an enzyme, such as those present in natural catalytic dyads or triads, unlock a higher potential for designer enzymes. We incorporated a boron-containing amino acid into the protein scaffold RamR to create an active enzyme for the kinetic resolution of α-hydroxythioesters.
View Article and Find Full Text PDFEnviron Int
December 2024
State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Extensive use of pyrethroid insecticides poses significant risks to both ecological ecosystems and human beings. Herein, Pseudomonas aeruginosa PAO1 exhibited exceptional degradation capabilities towards a range of pyrethroid family insecticides including etofenprox, bifenthrin, tetramethrin, D-cypermethrin, allethrin, and permethrin, with a degradation efficiency reaching over 84 % within 36 h (50 mg·L). Strain PAO1 demonstrated effective soil bioremediation by removing etofenprox across different concentrations (25-100 mg·kg), with a degradation efficiency over 77 % within 15 days.
View Article and Find Full Text PDFAn unusual family of bifunctional terpene synthases has been discovered in which both catalytic domains - a prenyltransferase and a cyclase - are connected by a long, flexible linker. These enzymes are unique to fungi and catalyze the first committed steps in the biosynthesis of complex terpenoid natural products: the prenyltransferase assembles 5-carbon precursors to form C geranylgeranyl diphosphate (GGPP), and the cyclase converts GGPP into a polycyclic hydrocarbon product. Weak domain-domain interactions as well as linker flexibility render these enzymes refractory to crystallization and challenge their visualization by cryo-EM.
View Article and Find Full Text PDFBioprocess Biosyst Eng
December 2024
Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149. Ilha Do Fundão, Rio de Janeiro, 21941-909, Brazil.
Heavy crude oil reserves are characterized by their high viscosity and density, largely due to significant quantities of asphaltenes. The removal of asphaltene precipitates from oil industry installations is crucial, as they can contaminate catalysts and obstruct pipelines. Therefore, this study aimed to bio-transform heavy oil asphaltenes into smaller molecules using the yeast Yarrowia lipolytica, known for its ability to efficiently degrade hydrophobic substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!