Time-course imaging experiments on live organisms are critical for understanding the dynamics of growth and development. Light-sheet microscopy has advanced the field of long-term imaging of live specimens by significantly reducing photo-toxicity and allowing fast acquisition of three-dimensional data over time. However, current light-sheet technology does not allow the imaging of multiple plant specimens in parallel. To achieve higher throughput, we have developed a Multi-sample Arabidopsis Growth and Imaging Chamber (MAGIC) that provides near-physiological imaging conditions and allows high-throughput time-course imaging experiments in the ZEISS Lightsheet Z.1. Here, we illustrate MAGIC's imaging capabilities by following cell divisions, as an indicator of plant growth and development, over prolonged time periods. To automatically quantify the number of cell divisions in long-term experiments, we present a FIJI-based image processing pipeline. We demonstrate that plants imaged with our chamber undergo cell divisions for >16 times longer than those with the glass capillary system supplied by the ZEISS Z1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2016.05.029 | DOI Listing |
STAR Protoc
January 2025
Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA. Electronic address:
Single-cell RNA sequencing (scRNA-seq) enables detailed characterization of cell states but often lacks insights into tissue clonal structures. Here, we present a protocol to probe cell states and clonal information simultaneously by enriching mitochondrial DNA (mtDNA) variants from 3'-barcoded full-length cDNA. We describe steps for input library preparation, mtDNA enrichment, PCR product cleanup, and paired-end sequencing.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan. Electronic address:
Extracellular vesicles (EVs) play a key role in cancer development and cellular homeostasis by transferring the biological cargo to recipient cells. Here, we describe steps for screening EV secretion-related genes by combining a microRNA (miRNA) library and ExoScreen, a highly sensitive EV detection technique. We also detail procedures for screening the direct target genes regulated by miRNAs.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Microbiology, Tumor and Cell Biology, Division of Virology and Immunology, Karolinska Institutet, 171 65 Solna, Sweden. Electronic address:
Protective antibodies against HIV-1 require unusually high levels of somatic mutations introduced in germinal centers (GCs). To achieve this, a sequential vaccination approach was proposed. Using HIV-1 antibody knockin mice with fate-mapping genes, we examined if antigen affinity affects the outcome of B cell recall responses.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
Land plants alternate between asexual sporophytes and sexual gametophytes. Unlike seed plants, ferns develop free-living gametophytes. Gametophytes of the model fern Ceratopteris exhibit two sex types: hermaphrodites with pluripotent meristems and males lacking meristems.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!