Enteric nervous system development in avian and zebrafish models.

Dev Biol

Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands. Electronic address:

Published: September 2016

Our current understanding of the developmental biology of the enteric nervous system (ENS) and the genesis of ENS diseases is founded almost entirely on studies using model systems. Although genetic studies in the mouse have been at the forefront of this field over the last 20 years or so, historically it was the easy accessibility of the chick embryo for experimental manipulations that allowed the first descriptions of the neural crest origins of the ENS in the 1950s. More recently, studies in the chick and other non-mammalian model systems, notably zebrafish, have continued to advance our understanding of the basic biology of ENS development, with each animal model providing unique experimental advantages. Here we review the basic biology of ENS development in chick and zebrafish, highlighting conserved and unique features, and emphasising novel contributions to our general understanding of ENS development due to technical or biological features.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2016.05.017DOI Listing

Publication Analysis

Top Keywords

ens development
12
enteric nervous
8
nervous system
8
model systems
8
basic biology
8
biology ens
8
ens
6
development
4
system development
4
development avian
4

Similar Publications

Phage-mediated intercellular CRISPRi for biocomputation in bacterial consortia.

Nucleic Acids Res

December 2024

Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.

Coordinated actions of cells in microbial communities and multicellular organisms enable them to perform complex tasks otherwise difficult for single cells. This has inspired biological engineers to build cellular consortia for larger circuits with improved functionalities while implementing communication systems for coordination among cells. Here, we investigate the signalling dynamics of a phage-mediated synthetic DNA messaging system and couple it with CRISPR interference to build distributed circuits that perform logic gate operations in multicellular bacterial consortia.

View Article and Find Full Text PDF

Data-driven material modeling based on the Constitutive Relation Error.

Adv Model Simul Eng Sci

December 2024

CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France.

Prior to any numerical development, the paper objective is to answer first to a fundamental question: what is the mathematical form of the most general data-driven constitutive model for stable materials, taking maximum account of knowledge from physics and materials science? Here we restrict ourselves to elasto-(visco-)plastic materials under the small displacement assumption. The experimental data consists of full-field measurements from a family of tested mechanical structures. In this framework, a general data-driven approach is proposed to learn the constitutive model (in terms of thermodynamic potentials) from data.

View Article and Find Full Text PDF

Diatom phytochromes integrate the underwater light spectrum to sense depth.

Nature

December 2024

CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France.

Aquatic life is strongly structured by the distribution of light, which, besides attenuation in intensity, exhibits a continuous change in the spectrum with depth. The extent to which these light changes are perceived by phytoplankton through photoreceptors is still inadequately known. We addressed this issue by integrating functional studies of diatom phytochrome (DPH) photoreceptors in model species with environmental surveys of their distribution and activity.

View Article and Find Full Text PDF

Paleo-evo-devo implications of a revised conceptualization of enameloids and enamels.

Biol Rev Camb Philos Soc

December 2024

UMR 7207 Centre de recherche en paléontologie - Paris (CR2P), Sorbonne Université, Muséum national d'Histoire naturelle, CNRS, 43 rue Buffon, Paris, 75005, France.

Understanding the origin and evolution of the mineralized skeleton is crucial for unravelling vertebrate history. However, several limitations hamper our progress. The first obstacle is the lack of uniformity and clarity in the literature for the definition of the tissues of concern, especially of enameloid(s) and enamel(s), resulting in ambiguous terminology and inconsistencies among studies.

View Article and Find Full Text PDF

Low latency carbon budget analysis reveals a large decline of the land carbon sink in 2023.

Natl Sci Rev

December 2024

Laboratoire des Sciences du Climat et de l'Environnement, University Paris Saclay CEA CNRS, Gif sur Yvette 91191, France.

In 2023, the CO growth rate was 3.37 ± 0.11 ppm at Mauna Loa, which was 86% above that of the previous year and hit a record high since observations began in 1958, while global fossil fuel CO emissions only increased by 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!