Cytotoxicity of many plant and bacterial toxins requires their endocytosis and retrograde transport from endosomes to the endoplasmic reticulum. Using cell fractionation and immunoblotting procedures, we have assessed the fate and action of the plant toxin ricin in rat liver in vivo, focusing on endosome-associated events and induction of apoptosis. Injected ricin rapidly accumulated in endosomes as an intact A/B heterodimer (5-90 min) and was later (15-90 min) partially translocated to cytosol as A- and B-chains. Unlike cholera and diphtheria toxins, which also undergo endocytosis in liver, neither in cell-free endosomes loaded by ricin in vivo nor upon incubation with endosomal lysates did ricin undergo degradation in vitro. A time-dependent translocation of ricin across the endosomal membrane occurred in cell-free endosomes. Endosome-located thioredoxin reductase-1 was required for translocation as shown by its physical association with ricin chains and effects of its removal and inhibition. Ricin induced in vivo intrinsic apoptosis as judged by increased cytochrome c content, activation of caspase-9 and caspase-3, and enrichment of DNA fragments in cytosol. Furthermore, reduced ricin and ricin B-chain caused cytochrome c release from mitochondria in vivo and in vitro, suggesting that the interaction of ricin B-chain with mitochondria is involved in ricin-induced apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cmi.12621 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
Ricin toxin (RT) is a potential bioterrorism agent because of its high potency, extremely small lethal dose, ease of preparation, and notable stability. Therefore, a portable method is urgently required to efficiently detect and determine the presence of toxicity of RT and evaluate its potency for public health monitoring and counter-bioterrorism responses. Currently, enzyme-based assays for detecting RT mainly focus on its -glycosidase activity.
View Article and Find Full Text PDFMicroorganisms
December 2024
Targeted Therapy Team, Institute for Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Applied Biological Chemistry, Graduate School of Environmental Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan.
Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits.
View Article and Find Full Text PDFiScience
December 2024
Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.
We present the results of a GC-MS and UHPLC-MS analysis of residue recovered from the marrow cavity of a 7,000-year-old bovid femur from Kruger Cave, South Africa. The femur was filled with an unknown substance into which were embedded three bone arrowheads, indicating that the femur served as a quiver. Our results reveal the presence of digitoxin and strophanthidin, both cardiac glycosides associated with hunting poisons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!