Colonization of infants with Clostridium difficile is on the rise. Although better tolerated by infants than adults, it is a risk factor for future allergic disease. The present study describes associations between infant fecal immunoglobulin A (IgA) and colonization with C. difficile in 47 infants enrolled in the Canadian Healthy Infant Longitudinal Development (CHILD) study. C. difficile colonization was observed in over half (53%) of the infants. Median IgA was lower in infants colonized with C. difficile (10.9 μg versus 25.5 μg per g protein; p = 0.18). A smaller proportion of infants with IgA in the highest tertile were colonized with C. difficile compared to the other tertiles (31.3% versus 64.5%, p = 0.03). In unadjusted analysis, odds of colonization with C. difficile was reduced by 75% (OR 0.25 95% CI 0.07, 0.91 p = 0.04) among infants with IgA in the highest tertile compared to those in the other tertiles. Following adjustment for parity, birth mode and breastfeeding, this association was even stronger (aOR 0.17, 95% CI 0.03, 0.94, p = 0.04). Our study provides evidence that high fecal IgA, independent of breastfeeding, is associated with reduced likelihood of C. difficile colonization in infancy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micinf.2016.05.001DOI Listing

Publication Analysis

Top Keywords

difficile colonization
12
high fecal
8
fecal iga
8
associated reduced
8
difficile
8
clostridium difficile
8
infants
8
colonization infants
8
colonization difficile
8
colonized difficile
8

Similar Publications

German surveillance data from 2022 reported a prevalence of nosocomial infections among hospitalized patients of 5,2%. Clostridioides-difficile-infections (CDI) are the most frequent cause of nosocomial diarrhea. They are usually caused by antibiotic exposure and the subsequent changes in the gut microbiota.

View Article and Find Full Text PDF

Background: Asymptomatic carriers significantly influence the transmission dynamics of C. difficile. This study aimed to assess the prevalence of toxigenic C.

View Article and Find Full Text PDF

Cell Wall Protein 2 as a Vaccine Candidate Protects Mice Against Infection.

Vaccines (Basel)

December 2024

Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA.

Background/objectives: is a Gram-positive, spore-forming enteric pathogen that causes intestinal disorders, including inflammation and diarrhea, primarily through toxin production. Standard treatment options for infection (CDI) involve a limited selection of antibiotics that are not fully effective, leading to high recurrence rates. Vaccination presents a promising strategy for preventing both CDI and its recurrence.

View Article and Find Full Text PDF

Subspecies phylogeny in the human gut revealed by co-evolutionary constraints across the bacterial kingdom.

Cell Syst

January 2025

Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA. Electronic address:

The human gut microbiome contains many bacterial strains of the same species ("strain-level variants") that shape microbiome function. The tremendous scale and molecular resolution at which microbial communities are being interrogated motivates addressing how to describe strain-level variants. We introduce the "Spectral Tree"-an inferred tree of relatedness built from patterns of co-evolutionary constraint between greater than 7,000 diverse bacteria.

View Article and Find Full Text PDF

Treatment with antibiotics is a major risk factor for infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to growth and competition between the microbiota and for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to infection in 12 different microbial communities cultivated from healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!