Conventional enhanced permeation and retention (EPR) mediates the effects of many drugs, including the accumulation of nanocarriers at tumor sites, but its efficiency remains low. In this study, this limitation was overcome by developing a dual-targeting delivery system based on hyaluronan (HA, a major ligand of CD44) and tetraiodothyroacetic acid (tetrac, a specific ligand of αvβ3), which was exploited to carry docetaxel (DTX) for the synergistic active targeting to tumors. First, a tetrac-HA (TeHA) conjugate was synthesized and grafted onto the surfaces of solid lipid nanoparticles (SLNs) (TeHA-SLNs/DTX), with a high encapsulation efficiency of >91.6%. The resulting SLNs exhibited an approximately toroid morphology revealed using TEM. The cellular uptake and cytotoxicity of various formulations on CD44/αvβ3-enriched B16F10 cells were then assessed, and both results confirmed the selective uptake and high cytotoxicity of the TeHA-SLNs/DTX in a TeHA-dependent manner. In vivo imaging and vessel distribution tests revealed the efficiency of synergistic active targeting was higher than that of EPR-mediated passive targeting by the TeHA-SLNs to αvβ3-expressing tumor blood vessels and CD44-expressing tumor cells via selective targeting. Finally, in both xenograft tumor mice and in situ lung metastasis tumor mice, tumor growth was significantly inhibited by TeHA-SLNs/DTX. Therefore, TeHA-SLNs are an efficient system for the dual-targeted delivery of drugs to treat cancer in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2016.05.050 | DOI Listing |
Mol Ther
January 2025
College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea. Electronic address:
Cancer immunotherapy has revolutionized cancer treatment due to its precise, target-specific approach compared to conventional therapies. However, treating solid tumors remains challenging as these tumors are inherently immunosuppressive, and their tumor microenvironment (TME) often limits therapeutic efficacy. Interestingly, certain bacterial species offer a promising alternative by exhibiting an innate ability to target and proliferate within tumor environments.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Chair of Microbiology, Jagiellonian University Medical College in Krakow, 18 Czysta Street, Cracow, 31-121, Poland.
Background: Aerobic vaginitis (AV) is a state of abnormal vaginal microbiota, which is associated with increased numbers of aerobic, enteric bacteria and inflammation of the vaginal epithelium. Anti-microbial treatment combined with anti-inflammatory therapy could be useful in the treatment of this condition. It is known that calcitriol, the active form of vitamin D, plays an important role in modulating the immune response in several inflammatory diseases.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
Amazonian Dark Earths (ADEs) are fertile soils from the Amazon rainforest that harbor microorganisms with biotechnological potential. This study aimed to investigate the individual and potential synergistic effects of a 2% portion of ADEs and Urochloa brizantha cv. Marandu roots (Brazil's most common grass species used for pastures) on soil prokaryotic communities and overall soil attributes in degraded soil.
View Article and Find Full Text PDFSci Rep
January 2025
Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands.
Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!