Peptide Biosynthesis with Stable Isotope Labeling from a Cell-free Expression System for Targeted Proteomics with Absolute Quantification.

Mol Cell Proteomics

From the ‡CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China; §BGI-Shenzhen, Shenzhen, 518083, China; ¶Sino-Danish Center for Education and Research, University of the Chinese Academy of Sciences, Beijing, 100049, China;

Published: August 2016

AI Article Synopsis

  • Targeted proteomics using mass spectrometry can precisely detect and quantify specific peptides amidst complex samples, but creating isotope-labeled peptides for large-scale analysis is challenging.
  • The proposed approach involves synthesizing isotope-labeled peptides with a quantification tag using an E. coli cell-free expression system, which allows for efficient peptide production and subsequent affinity enrichment.
  • The method was validated by synthesizing GST peptides and demonstrating their effectiveness as internal standards to achieve measurable and reproducible absolute quantification in mouse serum.

Article Abstract

Because of its specificity and sensitivity, targeted proteomics using mass spectrometry for multiple reaction monitoring is a powerful tool to detect and quantify pre-selected peptides from a complex background and facilitates the absolute quantification of peptides using isotope-labeled forms as internal standards. How to generate isotope-labeled peptides remains an urgent challenge for accurately quantitative targeted proteomics on a large scale. Herein, we propose that isotope-labeled peptides fused with a quantitative tag could be synthesized through an expression system in vitro, and the homemade peptides could be enriched by magnetic beads with tag-affinity and globally quantified based on the corresponding multiple reaction monitoring signals provided by the fused tag. An Escherichia coli cell-free protein expression system, protein synthesis using recombinant elements, was adopted for the synthesis of isotope-labeled peptides fused with Strep-tag. Through a series of optimizations, we enabled efficient expression of the labeled peptides such that, after Strep-Tactin affinity enrichment, the peptide yield was acceptable in scale for quantification, and the peptides could be completely digested by trypsin to release the Strep-tag for quantification. Moreover, these recombinant peptides could be employed in the same way as synthetic peptides for multiple reaction monitoring applications and are likely more economical and useful in a laboratory for the scale of targeted proteomics. As an application, we synthesized four isotope-labeled glutathione S-transferase (GST) peptides and added them to mouse sera pre-treated with GST affinity resin as internal standards. A quantitative assay of the synthesized GST peptides confirmed the absolute GST quantification in mouse sera to be measurable and reproducible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974354PMC
http://dx.doi.org/10.1074/mcp.O115.056507DOI Listing

Publication Analysis

Top Keywords

targeted proteomics
16
expression system
12
multiple reaction
12
reaction monitoring
12
peptides
12
isotope-labeled peptides
12
absolute quantification
8
quantification peptides
8
internal standards
8
peptides fused
8

Similar Publications

Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.

View Article and Find Full Text PDF

Subacute thyroiditis (SAT) is an inflammatory thyroid disease characterized by neck pain, tenderness, general symptoms, and thyroid dysfunction. Despite gaining new insights into the epidemiology, pathogenesis, and treatment of SAT in recent years, the exact pathogenesis and determinants of its clinical progression remain unclear. Here, we profiled thyroid in situ protein alterations in fine needle aspiration biopsy samples from SAT patients using proteomic analysis and uncovered 57 differentially abundant proteins.

View Article and Find Full Text PDF

Every protein progresses through a natural lifecycle from birth to maturation to death; this process is coordinated by the protein homeostasis system. Environmental or physiological conditions trigger pathways that maintain the homeostasis of the proteome. An open question is how these pathways are modulated to respond to the many stresses that an organism encounters during its lifetime.

View Article and Find Full Text PDF

Discovery of a potent PROTAC degrader for RNA demethylase FTO as antileukemic therapy.

Acta Pharm Sin B

December 2024

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.

View Article and Find Full Text PDF

Large-scale studies indicate a strong relationship between the gut microbiome, type 2 diabetes mellitus (T2DM), and atherosclerotic cardiovascular disease (ASCVD). Here, a higher abundance of the type III secretion system (T3SS) virulence factors of Enterobacteriaceae/Escherichia-Shigella in patients with T2DM-related-ASCVD, which correlates with their atherosclerotic stenosis is reported. Overexpression of T3SS via Citrobacter rodentium (CR) infection in Apoe-/- T2DM mice exacerbated atherosclerotic lesion formation and increased gut permeability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!