A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Semi-rational engineering of cytochrome CYP153A from Marinobacter aquaeolei for improved ω-hydroxylation activity towards oleic acid. | LitMetric

Semi-rational engineering of cytochrome CYP153A from Marinobacter aquaeolei for improved ω-hydroxylation activity towards oleic acid.

Appl Microbiol Biotechnol

Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.

Published: October 2016

ω-Hydroxy oleic acid is an important intermediate for the synthesis of certain polyesters and polyamides. In this study, a functional CYP153A/putidaredoxin (Pdx)/putidaredoxin reductase (Pdr) hybrid system was engineered for improved ω-hydroxylation activity towards oleic acid. By the combination of site-directed saturation mutagenesis (SDSM) and iterative saturation mutagenesis (ISM), a best mutant (Variant II) was obtained with mutations at two sites (S120 and P165) at the Pdx interaction interface with CYP153A, and one site (S453) in the substrate binding pocket. The in vitro-reconstituted activity of Variant II with purified Pdx and Pdr was 2.7-fold that of the template, while the whole cell transformation activity was 2.0-fold that of the template. A 96-well format-based screening scheme for CYP153A was also developed, which should be useful for engineering of other P450s with low activity. Kinetic analyses indicated that the activity improvement for CYP153A variants largely resulted from enhanced electron transfer. This further demonstrates the importance of the electron transfer between P450s and the non-native redox partners for the overall performance of hybrid P450 systems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-016-7634-1DOI Listing

Publication Analysis

Top Keywords

oleic acid
12
improved ω-hydroxylation
8
ω-hydroxylation activity
8
activity oleic
8
saturation mutagenesis
8
electron transfer
8
activity
6
semi-rational engineering
4
engineering cytochrome
4
cyp153a
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!