Follistatin-like 1 (FSTL1) functions as a pivotal modulator of inflammation and is implicated in many inflammatory diseases such as rheumatoid arthritis. Here, we report that FSTL1 is strongly upregulated and secreted during osteoclast differentiation of bone marrow-derived macrophages (BMMs) and that FSTL1 positively regulates osteoclast formation induced by RANKL and M-CSF. The overexpression of FSTL1 or treatment with recombinant FSTL1 (rFSTL1) in BMMs enhances the formation of multinuclear osteoclasts and the induction of c-Fos and NFATc1, transcription factors important for osteoclastogenesis. Conversely, knockdown of FSTL1 using a small hairpin RNA suppresses osteoclast formation and the expression of these transcription factors. While FSTL1 does not affect RANKL-stimulated activation of p38 MAPK, phosphorylation of IκBα, JNK, and ERK were increased by overexpression or addition of rFSTL1. Furthermore, rFSTL1 increased RANKL-induced NF-κB transcriptional activity in a dose-dependent manner. In addition to its role in osteoclastogenesis, FSTL1 promotes proliferation of osteoclast precursors by increasing M-CSF-induced ERK activation, which in turn leads to accelerated osteoclast formation. Together, our findings demonstrate that FSTL1 is a secreted osteoclastogenic factor that plays a critical role in osteoclast formation via the NF-κB and MAPKs signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2016.05.018 | DOI Listing |
Mol Ther
January 2025
Department of Orthopaedic surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Artic University of Norway, 9037 Tromsø, Norway.
To evaluate the drug release, cytocompatibility with periodontal ligament cells (PDLCs), and therapeutic efficacy of GelMA hydrogel loaded with resolvin D1 (RvD1) in treating rat periodontal inflammation and alveolar bone damage. An RvD1 complexed with GelMA was prepared, and its release kinetics and compatibility with PDLCs were assessed. Rats with induced periodontitis were treated weekly with topical applications of vehicle, GelMA, RvD1, or RvD1 complexed with GelMA for four weeks.
View Article and Find Full Text PDFNutrients
January 2025
College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA.
Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!