NK cells are critical for innate immunity-mediated protection. The main roles of NK cells rely on their cytotoxic functions or depend on the tuning of Th1 adaptive immunity by IFN-γ. However, the precise influence of inflammatory cytokines on NK cell and CD4 T lymphocyte interactions was never investigated. In this study, we provide evidence that IL-21, a cytokine produced during chronic inflammation or infectious diseases, promotes the differentiation of a specific subset of NK cells coexpressing CD86 and HLA-DR and lacking NKp44. More importantly, IL-21-propagated HLA-DR(+) NK cells produce macrophage migration inhibitory factor and provide costimulatory signaling during naive CD4(+) T cell priming inducing the differentiation of uncommitted central memory T cells. Central memory T cells expanded in the presence of HLA-DR(+) NK cells are CXCR3(+)CCR6(-)CCR4(-)CXCR5(-) and produce IL-2, as well as low levels of TNF-α. Costimulation of CD4(+) T cells by HLA-DR(+) NK cells prevents the acquisition of effector memory phenotype induced by IL-2. Moreover, we identified this population of NK HLA-DR(+) macrophage migration inhibitory factor(+) cells in inflammatory human appendix. Collectively, these results demonstrate a novel function for IL-21 in tuning NK and CD4(+) T cell interactions promoting a specific expansion of central memory lymphocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1501147 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Sports, Exercise and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, 100084 Beijing, China.
Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia.
Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system. The disease can manifest and progress with both physical and cognitive symptoms, affecting the patient's daily activities. The aim of our study was to investigate the correlation between functional status, cognitive functions, and neurofilament light chain levels in plasma in MS patients.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China.
Reconfigurable processor-based acceleration of deep convolutional neural network (DCNN) algorithms has emerged as a widely adopted technique, with particular attention on sparse neural network acceleration as an active research area. However, many computing devices that claim high computational power still struggle to execute neural network algorithms with optimal efficiency, low latency, and minimal power consumption. Consequently, there remains significant potential for further exploration into improving the efficiency, latency, and power consumption of neural network accelerators across diverse computational scenarios.
View Article and Find Full Text PDFBiomolecules
January 2025
Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Pará, Belém 66075-110, PA, Brazil.
Aromatic plants are rich sources of essential oils (EOs), recognized for their therapeutic properties due to their diversity of phytochemicals. This study investigated the anxiolytic and antidepressant effects of essential oil (MsEO) through inhalation in an animal model and its in vitro anticholinesterase (AChE) activity. The EO was obtained by hydrodistillation, and its volatile constituents were analyzed by GC-MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!