TLR-stimulated cross-presentation by conventional dendritic cells (cDCs) is important in host defense and antitumor immunity. We recently reported that cDCs lacking the type I IFN signaling molecule STAT2 are impaired in cross-presenting tumor Ags to CD8(+) T cells. To investigate how STAT2 affects cross-presentation, we determined its requirements for dendritic cell activation. In this study, we report that STAT2 is essential for the activation of murine female cDCs upon TLR3, -4, -7, and -9 stimulation. In response to various TLR ligands, Stat2(-/-) cDCs displayed reduced expression of costimulatory molecules and type I IFN-stimulated genes. The cDC responses to exogenous IFN-α that we evaluated required STAT2 activation, indicating that the canonical STAT1-STAT2 heterodimers are the primary signaling transducers of type I IFNs in cDCs. Interestingly, LPS-induced production of IL-12 was STAT2 and type I IFN receptor (IFNAR) dependent, whereas LPS-induced production of TNF-α and IL-6 was STAT2 and IFNAR independent, suggesting a specific role of the IFNAR-STAT2 axis in the stimulation of proinflammatory cytokines by LPS in cDCs. In contrast, R848- and CpG-induced cytokine production was less influenced by the IFNAR-STAT2 axis. Short kinetics and IFNAR blockade studies showed that STAT2 main function is to transduce signals triggered by autocrine type I IFNs. Importantly, Stat2(-/-) cDCs were deficient in cross-presenting to CD8(+) T cells in vitro upon IFN-α, CpG, and LPS stimulation, and also in cross-priming and licensing cytotoxic T cell killers in vivo. We conclude that STAT2 plays a critical role in TLR-induced dendritic cell activation and cross-presentation, and thus is vital in host defense.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912940 | PMC |
http://dx.doi.org/10.4049/jimmunol.1500152 | DOI Listing |
Mol Neurobiol
January 2025
Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China.
Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Pharmacy, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparation and Clinical Pharmacy, Hefei, Anhui 230026, China.
Inhibitors of the PD-1/PD-L1 immune checkpoint have revolutionized cancer treatment. However, the clinical response remains limited, with only 20% of patients benefiting from treatment and approximately 60% of PD-L1-positive patients exhibiting resistance. One key factor contributing to resistance is the externalization of phosphatidylserine (PS) on the surface of cancer cells, which suppresses immune responses and promotes PD-L1 expression, further hindering the efficacy of PD-L1 blockade therapies.
View Article and Find Full Text PDFSmall
January 2025
School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).
View Article and Find Full Text PDFSmall
January 2025
Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang, 110042, China.
Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA, 02139; Howard Hughes Medical Institute; Chevy Chase, MD, USA, 20815; Department of Materials Science of Engineering; Massachusetts Institute of Technology; Cambridge, MA, USA, 02139. Electronic address:
mRNA delivered using lipid nanoparticles (LNPs) has become an important subunit vaccine modality, but mechanisms of action for mRNA vaccines remain incompletely understood. Here, we synthesized a metal chelator-lipid conjugate enabling positron emission tomography (PET) tracer labeling of LNP/mRNA vaccines for quantitative visualization of vaccine trafficking in live mice and non-human primates (NHPs). Following i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!