The partitioning behavior of immunoglobulin G (IgG) in the aqueous two-phase system (ATPS) composed of poly(ethylene glycol) (PEG) and phosphate was studied. The parameters of ATPS exhibiting the pronounced effects on the partitioning behavior of IgG include phase composition, PEG molecular weight, and the addition of sodium chloride (NaCl). The accumulation of IgG at the interface of the ATPS increased drastically as the tie-line length (TLL) was increased. This trend was correlated with a linear relationship relating the natural logarithm of interfacial partition coefficient (ln G) to the difference of PEG concentration between the top phase and the bottom phase (Δ[PEG]), and a good fit was obtained. An attempt was made to correlate the natural logarithm of partition coefficient (ln K) to the presence of NaCl with the proposed linear relationship, ln K = α″ ln [Cl] + β″. The proposed relationship, which serves as a better description of the underlying mechanics of the protein partitioning behavior in the polymer-salt ATPS, provides a good fit (r > 0.95) for the data of IgG partitioning. An optimum recovery of 99.97% was achieved in an ATPS (pH 7.5) composed of 14.0% (w/w) PEG 1450, 12.5% (w/w) phosphate and 5.0% (w/w) NaCl.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2016.04.008 | DOI Listing |
J Chem Theory Comput
January 2025
IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.
Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.
View Article and Find Full Text PDFWater Res X
May 2025
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Information Science and Engineering, Shenyang University of Technology, Shenyang 110167, China.
In recent years, wireless sensor networks (WSNs) have become a crucial technology for infrastructure monitoring. To ensure the reliability of monitoring services, evaluating the network's reliability is particularly important. Sensor nodes are distributed linearly when monitoring linear structures, such as railway bridges, forming what is known as a Linear Wireless Sensor Network (LWSN).
View Article and Find Full Text PDFMolecules
December 2024
Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Wanstead P.O. Box 64, Barbados.
A computational study of X-H···Y binary hydrogen-bonded complexes was undertaken to examine the red- and blue-shifting behavior of three model X-H proton donors interacting with a series of Lewis bases: Y = NH, NCLi, NCH, NCF, CH, BF, CO, N and Ne. Two of these proton donors, FArH and FCH, have blue-shifting tendencies, while the third, FH, has red-shifting tendencies. A perturbation theory model for frequency shifts that was derived many years ago was employed to partition the predicted frequency shift into the sum of two components, one dependent on the second derivative of the interaction energy with respect to X-H displacement and the other dependent on the X-H bond length change in the binary complex.
View Article and Find Full Text PDFMolecules
December 2024
Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!