Aging is associated with endothelial dysfunction, defined as a reduction in nitric oxide (NO) bioavailability. Although the redox state of the NO acceptor soluble guanylate cyclase (sGC) is another determinant factor for its bioavailability and is disturbed by reactive oxygen species (ROS) known to be increased with age, it is unclear whether aging actually has an impact on vascular sGC redox equilibrium. Therefore, this study investigated this issue using two different types of compounds, the sGC stimulator BAY 41-2272 and the sGC activator BAY 60-2770. Plasma thiobarbituric acid-reactive substances (TBARS) levels were markedly higher in aged (19-20 months old) mice than in young (2-3 months old) mice, whereas superoxide levels in endothelium-denuded aortas were not different between the groups. The relaxant response of endothelium-denuded aortas to either BAY 41-2272 or BAY 60-2770 was identical in aged and young mice. In addition, the vascular cGMP production stimulated with BAY 41-2272 or BAY 60-2770 in aged mice was the same level as that in young mice. These findings suggest that aging accompanied by an increase in systemic oxidative stress does not affect vascular smooth muscle ROS generation and sGC redox equilibrium. Unless ROS are increased in vascular smooth muscle, the sGC redox equilibrium might remain unchanged.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4886176PMC
http://dx.doi.org/10.14814/phy2.12816DOI Listing

Publication Analysis

Top Keywords

sgc redox
12
redox equilibrium
12
bay 41-2272
12
bay 60-2770
12
soluble guanylate
8
guanylate cyclase
8
redox state
8
ros increased
8
endothelium-denuded aortas
8
41-2272 bay
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!