Oviductal epithelial cells selected boar sperm according to their functional characteristics.

Asian J Androl

Department of Physiology, Veterinary Faculty, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia 30100, Spain.

Published: March 2018

The interaction of oviductal epithelial cells (OECs) with the spermatozoa has beneficial effects on the sperm functions. The aim of this study is to evaluate the in vitro fertilizing capacity of incubating spermatozoa previously selected by density gradient in OEC and determinate some sperm characteristics that could explain the results obtained. In this study, we assessed in vitro fertilization (IVF), tyrosine phosphorylation, phosphatidylserine translocation, nuclear DNA fragmentation, and chromatin decondensation. Three experimental sperm groups, previously selected by Percoll gradient, were established according to the origin of the sperm used for IVF: (i) W30 group: spermatozoa were incubated with oocytes in the absence of OEC; (ii) NB group: after sperm incubation in OEC, the unbound spermatozoa were incubated with oocytes, in the absence of OEC; and (iii) B group: after sperm incubation with OEC, the bound spermatozoa were incubated with oocytes in the OEC plates. The results showed that sperm from the NB group led to a lower IVF yield, accompanied by low penetration rates (NB: 19.6%, B: 94.9%, and W30: 62.9%; P < 0.001) and problems of nuclear decondensation. Moreover, higher levels of tyrosine phosphorylation were observed in the NB group compared with the W30 and B groups (NB: 58.7%, B: 2.5%, and W30: 4.5%; P < 0.01). A similar trend was observed in phosphatidylserine translocation (NB: 93.7%, B: 5.7%, and W30: 44.2%; P < 0.01). These results demonstrate that the OEC exerts a rigorous degree of sperm selection, even within an already highly selected population of spermatozoa, and can capture the best functional spermatozoa for fertilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507082PMC
http://dx.doi.org/10.4103/1008-682X.173936DOI Listing

Publication Analysis

Top Keywords

spermatozoa incubated
12
incubated oocytes
12
sperm
9
oviductal epithelial
8
epithelial cells
8
tyrosine phosphorylation
8
phosphatidylserine translocation
8
oocytes absence
8
absence oec
8
group sperm
8

Similar Publications

The protective effect of zinc oxide nanoparticles on boar sperm during preservation at 17 °C.

Anim Reprod

January 2025

Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Hebei Langfang, China.

More than 90% of spermatozoa of boars in pork producing countries is stored in liquid at 17 °C; however, the quality of these spermatozoa is affected by bacterial breeding and oxidative damage. This study analyzed sperm quality and sperm capacitation after storage to study the effects of the effects of ZnO nanoparticles (ZnO NPs) supplementation on seminal plasma (SP)-free sperm preservation. We investigated the effects of adding 20, 50, 100 and 200 μg/mL of ZnO NPs to a seminal free boar sperm diluent over a 7-day period at 17 °C to assess the changes in non-capacitated/capacitated sperm quality parameters, antioxidant capacity, ATP content and extent of protein tyrosine phosphorylation.

View Article and Find Full Text PDF

Heterogeneity in Fluorescence-Stained Sperm Membrane Patterns and Their Dynamic Changes Towards Fertilization in Mice.

Front Biosci (Landmark Ed)

January 2025

Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.

Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.

View Article and Find Full Text PDF

This study investigated the effects of bisphenol A (BPA) and the involvement of nuclear estrogen receptors (ESR) on testicular energy metabolism and spermatogenesis in zebrafish. Testes were incubated with DMSO, 10 pM or 10μM BPA for 6 or 72h, with some samples pre-incubated with the ESRα/β antagonist ICI 182,780. Gene and protein expressions were analyzed using real-time PCR and Western blot, respectively.

View Article and Find Full Text PDF

Translational silence of spermatozoa has long been considered the norm in animals. However, studies in mammals have shown that the mitochondrial ribosomal machinery is selectively activated during capacitation in the female reproductive tract, while cytosolic ribosomes remain inactive. Here, using quantitative proteomics in a piscine model species, we show that proteins involved in mRNA processing and cytoplasmic translation are predominantly accumulated in immature spermatozoa within the extratesticular excurrent ducts, while those related to flagellar motility are enriched in ejaculated (mature) sperm.

View Article and Find Full Text PDF

Role of PI3K/AKT signaling pathway during capacitation.

Theriogenology

January 2025

Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, 37224, Republic of Korea. Electronic address:

Spermatozoa must undergo a complex maturation process within the female genital tract known as capacitation. This process entails the phosphorylation or dephosphorylation of various proteins, and multiple signaling pathways are recognized to play a role. The present study aims to identify alterations in the expression of proteins related to the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway and assess sperm functions during capacitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!