The purpose of this study was to evaluate the remineralization ability of an etch-and-rinse Zn-doped resin applied on caries-affected dentin (CAD). CAD surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5M ethylenediaminetetraacetic acid (EDTA). 10wt% ZnO nanoparticles or 2wt% ZnCl2 were added into the adhesive Single Bond (SB), to create the following groups: PA+SB, PA+SB-ZnO, PA+SB-ZnCl2, EDTA+SB, EDTA+SB-ZnO, EDTA+SB-ZnCl2. Bonded interfaces were submitted to mechanical loading or stored during 24h. Remineralization of the bonded interfaces was studied by AFM nano-indentation (hardness and Young׳s modulus), Raman spectroscopy [mapping with principal component analysis (PCA), and hierarchical cluster analysis (HCA)] and Masson׳s trichrome staining technique. Dentin samples treated with PA+SB-ZnO attained the highest values of nano-mechanical properties. Load cycling increased both mineralization and crystallographic maturity at the interface; this effect was specially noticed when using ZnCl2-doped resin in EDTA-treated carious dentin. Crosslinking attained higher frequencies indicating better conformation and organization of collagen in specimens treated with PA+SB-ZnO, after load cycling. Trichrome staining technique depicted a deeper demineralized dentin fringe that became reduced after loading, and it was not observable in EDTA+SB groups. Multivariate analysis confirmed de homogenizing effect of load cycling in the percentage of variances, traces of centroids and distribution of clusters, especially in specimens treated with EDTA+SB-ZnCl2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2016.05.013 | DOI Listing |
Infect Dis (Lond)
January 2025
Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
Background: Although recommended isolation periods for Coronavirus disease 2019 (COVID-19) have been shortened as the pandemic has subsided, prolonged Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) shedding remains common in immunocompromised patients. This study estimated the probability of viral clearance in these patients based on elapsed days and specific risk factors.
Methods: We prospectively enrolled immunocompromised patients with a confirmed COVID-19 diagnosis from January 2022 to May 2023 during the Omicron variant era.
Sci Rep
January 2025
School of Railway Engineering, Hunan Technical College of Railway High-Speed, Hengyang, 421002, China.
Research on the evolutionary behavior of the particle breakage processes in coarse-grained soil under the action of train load is of practical significance for subgrade construction and maintenance. However, existing studies have not addressed the prediction of particle size distribution evolution. In this paper, the MTS loading system is used to simulate the dynamic train load effect on coarse-grained soil fillers.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Chemistry, University of Guilan, P. O. Box: 41335-1914, Rasht, Iran.
The catalytic efficiency of sulfonated polystyrene foam waste (SPS) and sulfonated gamma alumina (SGA) in Friedel-Crafts type reactions was compared. All of the materials were studied using the state-of-the-art characterization techniques. SPS was found to carry a higher load of -SOH functional groups (1.
View Article and Find Full Text PDFEstablishing a reasonable and precise theoretical model for pipe roof is crucial for advancing pre-support technology in tunnel construction. By considering the processes of tunnel excavation and support, as well as the reduced constraint reaction force on the pipe roof in unexcavated section due to the disturbance at the tunnel face, this paper establishes a load-structure model for pipe roof based on the Euler-Bernoulli beam theory. The Pasternak elastic foundation model is utilized to ascertain the constraint reaction force exerted by primary support and surrounding soil ahead of the tunnel face on the pipe roof.
View Article and Find Full Text PDFNat Commun
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
Achieving a synergy of biocompatibility and extreme environmental adaptability with excellent mechanical property remains challenging in the development of synthetic materials. Herein, a "bottom-up" solution-interface-induced self-assembly strategy is adopted to develop a compressible, anti-fatigue, extreme environment adaptable, biocompatible, and recyclable organohydrogel composed of chitosan-lignosulfonate-gelatin by constructing noncovalent bonded conjoined network. The ethylene glycol/water solvent induced lignosulfonate nanoparticles function as bridge in chitosan/gelation network, forming multiple interfacial interactions that can effectively dissipate energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!