Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen which causes huge economic damage globally in the swine industry. Current vaccination strategies provide only limited protection against PRRSV infection. Viperin is an interferon (IFN) stimulated protein that inhibits some virus infections via IFN-dependent or IFN-independent pathways. However, the role of viperin in PRRSV infection is not well understood. In this study, we cloned the full-length monkey viperin (mViperin) complementary DNA (cDNA) from IFN-α-treated African green monkey Marc-145 cells. It was found that the mViperin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1 gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin suppresses PRRSV replication by blocking the early steps of PRRSV entry and genome replication and translation but not inhibiting assembly and release. And mViperin co-localized with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic loci. Furthermore, it was found that the 13-16 amino acids of mViperin were essential for inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the granular distribution to a homogeneous distribution in the cytoplasm. These results could be helpful in the future development of novel antiviral therapies against PRRSV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883763 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156513 | PLOS |
PLoS Pathog
January 2025
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
Mitochondria, recognized as the "powerhouse" of cells, play a vital role in generating cellular energy through dynamic processes such as fission and fusion. Viruses have evolved mechanisms to hijack mitochondrial function for their survival and proliferation. Here, we report that infection with the swine arterivirus porcine reproductive and respiratory syndrome virus (PRRSV), manipulates mitochondria calcium ions (Ca2+) to induce mitochondrial fission and mitophagy, thereby reprogramming cellular energy metabolism to facilitate its own replication.
View Article and Find Full Text PDFVirulence
December 2025
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
Multiple porcine reproductive and respiratory syndrome virus (PRRSV) subtypes coinfect numerous pig farms in China, and commercial PRRSV vaccines offer limited cross-protection against heterologous strains. Our previous research confirmed that a PRRSV lineage 1 branch attenuated live vaccine (SD-R) provides cross-protection against HP-PRRSV, NADC30-like PRRSV and NADC34-like PRRSV. HP-PRRSV has undergone significant genetic variation following nearly two decades of evolution and has transformed into a subtype referred to as HP-like PRRSV, which also exhibits high pathogenicity.
View Article and Find Full Text PDFVirology
January 2025
College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China. Electronic address:
Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral infectious disease that can cause infection in pigs of different ages. The condition known as porcine reproductive and respiratory syndrome poses a serious risk to the world's pig business and results in significant financial losses. Fuzhengjiedu San (FZJDS) is a traditional Chinese medicine compound, the main components include:Radix Isatidis, Radix Astragali and Herba Epimedii.
View Article and Find Full Text PDFVet Microbiol
January 2025
Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States. Electronic address:
Porcine reproductive and respiratory syndrome (PRRS), caused by the highly variable PRRS virus (PRRSV), presents a significant challenge to the swine industry due to its pathogenic and economic burden. The virus evades host immune responses, particularly interferon (IFN) signaling, through various viral mechanisms. Traditional vaccines have shown variable efficacy in the field, prompting the exploration of novel vaccination strategies.
View Article and Find Full Text PDFVet Microbiol
January 2025
Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious swine pathogen, causing respiratory problems in piglets and reproductive failure in sows. Palmitoylation, catalyzed by zinc finger Asp-His-His-Cys (ZDHHC) domain-containing palmitoyl acyltransferases, plays intricate roles in virus infection. However, whether palmitoylation regulates PRRSV replication is incompletely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!