Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, removal efficiency of phenazopyridine (PhP) as a model pharmaceutical contaminant was investigated in a batch-recirculated photoreactor packed with immobilized TiO2-P25 nanoparticles on glass beads. Influence of various operational parameters such as irradiation time, initial concentration of PhP, volume of solution, volumetric flow rate, pH and power of light source was investigated. Results indicated that removal percentage increases with the rise of irradiation time, volumetric flow rate and power of light source but decreases with the rise of initial concentration of PhP and volume of solution. Highest removal percentage was obtained in the natural pH of PhP solution (pH = 5.9). Results of mineralization studies also showed a decreasing trend of total organic carbon (TOC) and producing mineralization products such as NO3(-), NO2(-) and NH4(+). Modeling of the process using artificial neural network showed that the most effective parameters in the degradation of PhP were volume of solution and power of light source. The packed bed photoreactor with TiO2-P25 nanoparticles coated onto glass beads in consecutive repeats have the proper ability for PhP degradation. Therefore, this system can be a promising alternative for the removal of recalcitrant organic pollutants such as PhP from aqueous solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2016.132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!