Energy-Efficient Collaborative Outdoor Localization for Participatory Sensing.

Sensors (Basel)

Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, USA.

Published: May 2016

Location information is a key element of participatory sensing. Many mobile and sensing applications require location information to provide better recommendations, object search and trip planning. However, continuous GPS positioning consumes much energy, which may drain the battery of mobile devices quickly. Although WiFi and cell tower positioning are alternatives, they provide lower accuracy compared to GPS. This paper solves the above problem by proposing a novel localization scheme through the collaboration of multiple mobile devices to reduce energy consumption and provide accurate positioning. Under our scheme, the mobile devices are divided into three groups, namely the broadcaster group, the location information receiver group and the normal participant group. Only the broadcaster group and the normal participant group use their GPS. The location information receiver group, on the other hand, makes use of the locations broadcast by the broadcaster group to estimate their locations. We formulate the broadcaster set selection problem and propose two novel algorithms to minimize the energy consumption in collaborative localization. Simulations with real traces show that our proposed solution can save up to 68% of the energy of all of the participants and provide more accurate locations than WiFi and cellular network positioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934188PMC
http://dx.doi.org/10.3390/s16060762DOI Listing

Publication Analysis

Top Keywords

mobile devices
12
broadcaster group
12
participatory sensing
8
energy consumption
8
provide accurate
8
location receiver
8
receiver group
8
group normal
8
normal participant
8
participant group
8

Similar Publications

Background: Creatinine is a small molecule disease biomarker that reflects kidney function, accurate and effective detection of creatinine will play an important role in the prevention and treatment of diseases. Currently, commonly used creatinine detection methods are limited by expensive instruments, complex sample preparation, many interference factors from biological samples, and environmental factors that can affect the accuracy of the measurement. Therefore, developing a fast, simple, inexpensive, sensitive analysis method that can eliminate background interference and provide multi-detection modes has strong attraction and value.

View Article and Find Full Text PDF

ADAMT: Adaptive distributed multi-task learning for efficient image recognition in Mobile Ad-hoc Networks.

Neural Netw

March 2025

School of Computer Technology and Engineering, Changchun Institute of Technology, Changchun, China; College of Artificial Intelligence Technology, Changchun Institute of Technology, Changchun, China. Electronic address:

Distributed machine learning in mobile adhoc networks faces significant challenges due to the limited computational resources of devices, non-IID data distribution, and dynamic network topology. Existing approaches often rely on centralized coordination and stable network conditions, which may not be feasible in practice. To address these issues, we propose an adaptive distributed multi-task learning framework called ADAMT for efficient image recognition in resource-constrained mobile ad hoc networks.

View Article and Find Full Text PDF

Background: Screening for cognitive impairment in primary care is important, yet primary care physicians (PCPs) report conducting routine cognitive assessments for less than half of patients older than 60 years of age. Linus Health's Core Cognitive Evaluation (CCE), a tablet-based digital cognitive assessment, has been used for the detection of cognitive impairment, but its application in primary care is not yet studied.

Objective: This study aimed to explore the integration of CCE implementation in a primary care setting.

View Article and Find Full Text PDF

Molecular Chain Interpenetration-Enabled High Interfacial Compatibility of Ionic and Electronic Conductors for Stretchable Ionic Devices.

Adv Mater

March 2025

Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Advanced Materials, Department of Biomaterials, College of Materials, Institute of Flexible Electronics (IFE, Future Technologies), Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen, 361005, China.

Ionic devices find applications such as flexible electronics and biomedicines and function by exploiting hybrid circuits of mobile ions and electrons. However, the poor interfacial compatibility of hard electronic conductors with soft ionic conductors in ionic devices leads to low deformability, sensitivity, electromechanical responses, and stability. Herein, an interpenetrating interface between silicone-modified polyurethane/carbon nanotube electronic conductors and ionoelastomers in an ionic device using in situ polymerization is fabricated.

View Article and Find Full Text PDF

Background: The growing use of smartphones among elderly individuals, driven by social and informational needs, may lead to smartphone addiction, potentially impacting their daily lives. This study aimed to determine whether there is a difference in physical activity, activities of daily living, and balance levels between elderly individuals with and without smartphone addiction.

Methods: This descriptive and cross-sectional study included 94 elderly individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!