MiR-499-5p protects cardiomyocytes against ischaemic injury via anti-apoptosis by targeting PDCD4.

Oncotarget

Department of Emergency, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.

Published: June 2016

Recent studies have reported that miRNAs might play critical roles in acute myocardial infarction (AMI). The objective of this study is to investigate the role of miR-499-5p in AMI and its potential molecular mechanisms. The expression level of MiR-499-5p was remarkably decreased in the infarcted myocardial tissues and in the cultured neonatal rat cardiomyocytes induced by hypoxia. Overexpression or knockdown of miR-499-5p decreased or increased the apoptotic rates of cultured cardiomyocytes in vitro. In addition, ectopic overexpression of miR-499-5p in the rat AMI models with agomir reduced the myocardial infarct size through decreasing the cardiomyocytes apoptosis in the infarcted area of the rat hearts. PDCD4 (programmed cell death 4) was verified as a direct target of miR-499-5p by luciferase report assay, and ectopic overexpression or inhibition of miR-499-5p could inhibit or increase the PDCD4 expression at both the mRNA and protein levels. Furthermore, we found that ectopic overexpression of PDCD4 without miR-499-5p binding sites reversed miR-499-5p-mediated cardiomyocytes apoptosis. Together, these findings revealed the role of miR-499-5p in protecting the cardiomyocytes against apoptosis induced by AMI via its direct target PDCD4, which providing evidence for the miR-499-5p/PDCD4 pathway as a potential therapeutic target for patients with AMI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094948PMC
http://dx.doi.org/10.18632/oncotarget.9597DOI Listing

Publication Analysis

Top Keywords

ectopic overexpression
12
cardiomyocytes apoptosis
12
mir-499-5p
9
role mir-499-5p
8
direct target
8
cardiomyocytes
6
pdcd4
5
ami
5
mir-499-5p protects
4
protects cardiomyocytes
4

Similar Publications

Despite decades of research, the pathogenesis of endometriosis remains unclear. Recent studies have shown that microRNAs play an important role in this condition. In this study, we found that the expression level of miR-450b-5p was increased in ectopic endometrial tissues and that GA-binding protein A (GABPA) and HOXD10 expression levels were decreased.

View Article and Find Full Text PDF

A novel glycosyltransferase gene RsUGT71B5 from Raphanus sativus L. regulated root growth and seedling development.

Plant Physiol Biochem

January 2025

College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China. Electronic address:

The plant UDP-glycosyltransferases (UGTs) regulate several metabolic processes during root growth and development by conjugating sugar moieties to various small molecules. RsUGT71B5 is a novel UDP-glycosyltransferase in Raphanus sativus L., but its biological function is not well established.

View Article and Find Full Text PDF

Background: Endometriosis is characterized by the ectopic growth of endometrial-like cells, causing chronic pelvic pain, adhesions and impaired fertility in women of reproductive age. Usually, these lesions grow in the peritoneal cavity in a hypoxic environment. Hypoxia is known to affect gene expression and protein kinase (PK) activity.

View Article and Find Full Text PDF

The GRAS transcription factor OsGRAS2 negatively impacts salt tolerance in rice.

Plant Cell Rep

December 2024

Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.

Transcription factor OsGRAS2 regulates salt stress tolerance and yield in rice. Plant-specific GRAS transcription factors are involved in many different aspects of plant growth and development, as well as in biotic and abiotic stress responses, although whether and how they participate in salt stress tolerance in rice (Oryza sativa) remains unclear. A screen of a previously generated set of activation-tagged lines revealed that Activation Tagging Line 63 (AC63) displayed a salt stress-sensitive phenotype.

View Article and Find Full Text PDF

Downregulated METTL3 Accumulates TERT Expression that Promote the Progression of Ovarian Endometriosis.

Front Biosci (Landmark Ed)

December 2024

Department of Gynecology, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng People's Hospital, 048026 Jincheng, Shanxi, China.

Background: Endometriosis is a complicated and enigmatic disease that significantly diminishes the quality of life for women affected by this condition. Increased levels of human telomerase reverse transcriptase () mRNA and telomerase activity have been found in the endometrium of these patients. However, the precise function of TERT in endometriosis and the associated biological mechanisms remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!