Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603, formerly known as K. pneumoniae K6, is known for producing extended-spectrum β-lactamase (ESBL) enzymes that can hydrolyze oxyimino-β-lactams, resulting in resistance to these drugs. We herein report the complete genome of strain ATCC 700603 and show that the ESBL genes are plasmid-encoded.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882950PMC
http://dx.doi.org/10.1128/genomeA.00438-16DOI Listing

Publication Analysis

Top Keywords

strain atcc
12
atcc 700603
12
complete genome
8
klebsiella quasipneumoniae
8
quasipneumoniae subsp
8
subsp similipneumoniae
8
similipneumoniae strain
8
genome sequence
4
sequence klebsiella
4
700603 klebsiella
4

Similar Publications

Houtt. Transformed Hairy Root Cultures as an Effective Platform for Producing Phenolic Compounds with Strong Bactericidal Properties.

Int J Mol Sci

January 2025

Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.

Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.

View Article and Find Full Text PDF

From the 1950s to the present, the main tool for obtaining fungal industrial producers of secondary metabolites remains the so-called classical strain improvement (CSI) methods associated with multi-round random mutagenesis and screening for the level of target products. As a result of the application of such techniques, the yield of target secondary metabolites in high-yielding (HY) strains was increased hundreds of times compared to the wild-type (WT) parental strains. However, the events that occur at the molecular level during CSI programs are still unknown.

View Article and Find Full Text PDF

Novel Antibacterial 4-Piperazinylquinoline Hybrid Derivatives Against : Design, Synthesis, and In Vitro and In Silico Insights.

Molecules

December 2024

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.

Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.

View Article and Find Full Text PDF

sp. nov., isolated from human epidermis.

Int J Syst Evol Microbiol

January 2025

Department of Bio Health Science, Changwon National University, Changwon, Gyeongnam 51140, Republic of Korea.

Five pink-pigmented bacterial strains, isolated from human skin and classified within the genus , were examined. Among them, four were identified as , while strain OT10 was deemed to be a potential novel species. Strain OT10 exhibited characteristics, such as Gram-stain-negative, oxidase positive, motile, strictly aerobic and rod shaped.

View Article and Find Full Text PDF

The murine hepatitis virus (MHV) is an important model system for studying coronavirus (CoV) molecular and cell biology. Despite this, few reagents for MHV are available through repositories such as ATCC or Addgene, potentially limiting the widespread adoption of MHV as a tractable model system. To overcome some challenges inherent in the existing MHV reverse genetics systems, we developed a plasmid-launched transformation-associated recombination (TAR) cloning-based system to assemble the MHV (strain A59; MHV-A59) genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!