A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. | LitMetric

Podosomes are dynamic cell-matrix contact structures that combine several key abilities, including adhesion, matrix degradation and mechanosensing. These actin-based cytoskeletal structures have been mostly studied in monocytic cells, but much less is known about those formed in other lineages. In this study, we characterise podosomes in capillary-derived microvascular endothelial cells. We identify two types of podosomes: constitutive podosomes that form in the absence of specific stimulation and induced podosomes that arise in response to the angiogenic factor VEGF-A. Constitutive and VEGF-A-induced podosomes share similar components but exhibit marked differences in terms of gelatinolytic activity. We also show that the extracellular matrix proteins laminin and collagen-IV are key determinants of the VEGF-A response, but neither collagen-I nor fibronectin are conducive for podosome induction. Moreover, only collagen-IV elicits the formation of proteolytically active podosomes through a mechanism involving increased Src phosphorylation, p190RhoGAP-B (also known as ARHGAP5) relocalisation and MT1-MMP (also known as MMP14) cell surface exposure at podosome sites. We hypothesise that by promoting podosome formation, VEGF-A enables endothelial cells to overcome the basement membrane barrier to allow sprouting outwards from the existing vasculature.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.186585DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
microvascular endothelial
8
podosomes
7
vegf-a
4
vegf-a stimulates
4
stimulates podosome-mediated
4
podosome-mediated collagen-iv
4
collagen-iv proteolysis
4
proteolysis microvascular
4
cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!