We report on the design of glycosylated nanogels via core-cross-linking of amphiphilic non-water-soluble block copolymers composed of an acetylated glycosylated block and a pentafluorophenyl (PFP) activated ester block prepared by reversible addition-fragmentation (RAFT) polymerization. Self-assembly, pH-sensitive core-cross-linking, and removal of remaining PFP esters and protecting groups are achieved in one pot and yield fully hydrated sub-100 nm nanogels. Using cell subsets that exhibit high and low expression of the mannose receptor (MR) under conditions that suppress active endocytosis, we show that mannosylated but not galactosylated nanogels can efficiently target the MR that is expressed on the cell surface of primary dendritic cells (DCs). These nanogels hold promise for immunological applications involving DCs and macrophage subsets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.6b00685DOI Listing

Publication Analysis

Top Keywords

nanogels
5
ph-degradable mannosylated
4
mannosylated nanogels
4
nanogels dendritic
4
dendritic cell
4
cell targeting
4
targeting report
4
report design
4
design glycosylated
4
glycosylated nanogels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!