The behaviors of the electrodes Ti/PbO2 and Ti/Pt/PbO2 as anodes in the electro-oxidation of two antibiotics-tetracycline and oxytetracycline-were evaluated at different applied current densities, to evaluate the influence of the Pt interlayer. In the preparation of the electrodes, the electrodeposited β-PbO2 phase was homogeneous; no Ti or Pt peaks were detected in the diffractograms. The β-PbO2 surface presented significant roughness when deposited over the Pt interlayer, which also conferred significant conductivity to the material. In the electro-oxidation assays, the COD, TOC and absorbance removals increased with the current density due to an increase in the concentration of hydroxyl radicals, for both electrode materials and antibiotics tested. Slightly better results were obtained with Ti/PbO2. The primary differences observed in the antibiotics concentration decay consisted of zero-order kinetics at the Ti/Pt/PbO2 anode and first-order kinetics at the Ti/PbO2 anode with a higher oxytetracycline concentration decay than the tetracycline concentration decay. A greater amount of total nitrogen was eliminated with the Ti/PbO2 electrode. At the Ti/Pt/PbO2 anode, the organic nitrogen primarily transformed into NH4(+) and the total nitrogen remained unchanged. The specific energy consumption with the Ti/Pt/PbO2 anode was significantly lower than the specific energy consumption with the Ti/PbO2 anode due to the higher electrical conductivity of the Ti/Pt/PbO2 anode. Both anode materials were also utilized in the electro-oxidation of a leachate sample collected at sanitary landfill and spiked with tetracycline, and the complete elimination of the antibiotic molecule was observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10934529.2016.1181455 | DOI Listing |
J Environ Sci Health A Tox Hazard Subst Environ Eng
August 2016
a FibEnTech UBI Research Unit and Department of Chemistry , University of Beira Interior, Covilhã , Portugal.
The behaviors of the electrodes Ti/PbO2 and Ti/Pt/PbO2 as anodes in the electro-oxidation of two antibiotics-tetracycline and oxytetracycline-were evaluated at different applied current densities, to evaluate the influence of the Pt interlayer. In the preparation of the electrodes, the electrodeposited β-PbO2 phase was homogeneous; no Ti or Pt peaks were detected in the diffractograms. The β-PbO2 surface presented significant roughness when deposited over the Pt interlayer, which also conferred significant conductivity to the material.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2016
FibEnTech/MTP Unit and Department of Chemistry, University of Beira Interior, 6201-001, Covilhã, Portugal.
Boron-doped diamond (BDD) and Ti/Pt/PbO anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid.
View Article and Find Full Text PDFSci Total Environ
January 2016
FibEnTech/MTP Unit and Department of Chemistry, University of Beira Interior, 6201-001 Covilhã, Portugal.
The influence of applied current density and chloride ion concentration on the ability of Ti/Pt/PbO2 and Ti/Pt/SnO2-Sb2O4 anodes for the electrochemical oxidation of humic acid and sanitary landfill leachate samples was assessed and compared with that of BDD anode. For the experimental conditions used, results show that both organic load and nitrogen removal rates increase with the applied current density and chloride ion concentration, although there is an optimum COD/[Cl-]0 ratio below which there is no further increase in COD removal. Metal oxide anodes present a similar performance to that of BDD, being the results obtained for Ti/Pt/PbO2 slightly better than for Ti/Pt/SnO2-Sb2O4.
View Article and Find Full Text PDFChemosphere
February 2007
Departamento de Química, Universidade Federal de São Carlos, C. P. 676, 13560-970 São Carlos, SP, Brazil.
The electrochemical performance of pure Ti-Pt/beta-PbO2 electrodes, or doped with Fe and F (together or separately), in the oxidation of simulated wastewaters containing the Blue Reactive 19 dye (BR-19), using a filter-press reactor, was investigated and then compared with that of a boron-doped diamond electrode supported on a niobium substrate (Nb/BDD). The electrooxidation of the dye simulated wastewater (volume of 0.1 l, with a BR-19 initial concentration of 25 mg l(-1)) was carried out under the following conditions: current density of 50 mA cm(-2), volume flow rate of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!