Extensive hypoxic regions are the daunting hallmark of glioblastoma, as they host aggressive stem-like cells, hinder drug delivery and shield cancer cells from the effects of radiotherapy. Nanotechnology could address most of these issues, as it employs nanoparticles (NPs) carrying drugs that selectively accumulate and achieve controlled drug release in tumor tissues. Methods overcoming the stiff interstitium and scarce vascularity within hypoxic zones include the incorporation of collagenases to degrade the collagen-rich tumor extracellular matrix, the use of multistage systems that progressively reduce NP size or of NP-loaded cells that display inherent hypoxia-targeting abilities. The unfavorable hypoxia-induced low pH could be converted into a therapeutical advantage by pH-responsive NPs or multilayer NPs, while overexpressed markers of hypoxic cells could be specifically targeted for an enhanced preferential drug delivery. Finally, promising new gene therapeutics could also be incorporated into nanovehicles, which could lead to silencing of hypoxia-specific genes that are overexpressed in cancer cells. In this review, we highlight NPs which have shown promising results in targeting cancer hypoxia and we discuss their applicability in glioblastoma, as well as possible limitations. Novel research directions in this field are also considered.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-016-1947-8DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
cancer cells
8
cells
5
nanoparticles targeting
4
targeting intratumoral
4
intratumoral hypoxia
4
hypoxia exploiting
4
exploiting potential
4
potential weakness
4
weakness glioblastoma
4

Similar Publications

Background: Aortic dissection occurs rarely during pregnancy but carries a significantly high vital risk for both the mother and the fetus. Early diagnosis and treatment are critical for a successful outcome.

Case Presentation: A 32-year-old pregnant woman at 31 weeks of gestation began experiencing shortness of breath, chest pain, and palpitations, which were attributed to an anxiety disorder she had been previously diagnosed with.

View Article and Find Full Text PDF

Background: The events of October 7, 2023, and the subsequent war have starkly exposed the shortcoming of Israel's public mental health system. This system, already strained by years of underfunding and the COVID-19 pandemic, was unprepared for the surge in mental health needs resulting from these traumatic events. This paper outlines the systemic failures and proposes a comprehensive overhaul reform towards an integrative community-based, recovery-oriented mental health service.

View Article and Find Full Text PDF

Background: The diagnosis of depression or anxiety treated by SSRIs has become relatively common in women of childbearing age. However, the impact of gestational SSRI treatment on newborn thyroid function is lacking. We explored the impact of gestational SSRI treatment on newborn thyroid function as measured by the National Newborn Screening (NBS) Program and identified contributory factors.

View Article and Find Full Text PDF

P-cadherin, a crucial cell-cell adhesion protein which is overexpressed in numerous malignant cancers, is a popular target for drug delivery antibodies. However, molecular guidelines for engineering antibodies that can be internalized upon binding to P-cadherin are unknown. Here, we use a combination of biophysical, biochemical, and cell biological methods to demonstrate that trapping the P-cadherin extracellular region in an X-dimer adhesive conformation triggers cadherin endocytosis via an outside-in signaling mechanism.

View Article and Find Full Text PDF

pH-sensitive nano-drug delivery systems dual-target endothelial cells and macrophages for enhanced treatment of atherosclerosis.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.

Atherosclerosis (AS) is a chronic inflammatory disease characterized by vascular endothelial dysfunction. In the early stage of the disease, endothelial cell injury induces the infiltration of inflammatory macrophages, which secrete large amounts of inflammatory factors, further aggravating endothelial cell dysfunction and exacerbating the disease. Therefore, it is promising for co-targeting endothelial cells and macrophages further regulating the inflammatory microenvironment and endothelial cell function for effective treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!