Stabilization of a Zn(ii) hydrosulfido complex utilizing a hydrogen-bond accepting ligand.

Chem Commun (Camb)

Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.

Published: June 2016

Hydrogen sulfide (H2S) has gained recent attention as an important biological analyte that interacts with bioinorganic targets. Despite this importance, stable H2S or HS(-) adducts of bioinorganic metal complexes remain rare due to the redox activity of sulfide and its propensity to form insoluble metal sulfides. We report here reversible coordination of HS(-) to Zn(didpa)Cl2, which is enabled by an intramolecular hydrogen bond between the zinc hydrosulfido product and the pendant tertiary amine of the didpa ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cc01373bDOI Listing

Publication Analysis

Top Keywords

stabilization znii
4
znii hydrosulfido
4
hydrosulfido complex
4
complex utilizing
4
utilizing hydrogen-bond
4
hydrogen-bond accepting
4
accepting ligand
4
ligand hydrogen
4
hydrogen sulfide
4
sulfide h2s
4

Similar Publications

A novel Schiff base ligand (L), bearing NO donor sites, was derived from the condensation of 5-chloromethylisophthaldehyde and phenylpropanolamine (PPA). Mononuclear Co(II), Cu(II), and Zn(II) complexes were synthesized and were characterized by FTIR, UV-Vis, H NMR, ESI-mass spectroscopy, molar conductance, and thermal and electrochemical studies. The thermal investigation revealed that the complexes were stable up to 150-250 °C and began to degrade in stages, resulting in the development of respective metal oxides.

View Article and Find Full Text PDF

Since the 1980s, pressure-sensitive paint (PSP) has been used as an optical pressure sensor for measuring surface pressure on aircraft models in wind tunnels. Typically, PSPs have utilized platinum(II)-5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin due to its high pressure sensitivity, phosphorescence lifetime of ∼50 μs, reasonable quantum yield of emission, and resistance to photo-oxidation. This work investigates the photophysics and electronic structure of metal complexes of 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin, namely, Zn(II), Pd(II), and Ir(III), as potentially improved luminophores for polymer-based PSPs.

View Article and Find Full Text PDF

Tuning Bro̷nsted Acidity by up to 12 p Units in a Redox-Active Nanopore Lined with Multifunctional Metal Sites.

J Am Chem Soc

January 2025

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States.

Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites ( = H, Zn, Co, Co) affect the p of benzoic acid guests bound in discrete porphyrin nanoprisms () in CDCN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H transfer processes that are needed to support important electrochemical reactions (e.

View Article and Find Full Text PDF
Article Synopsis
  • Selective binding and optical sensing of Zn(II) and Cd(II) in water were studied using different receptors (L1, HL2, L3, HL4, HL5) to see how complex stability affects metal signaling.
  • The receptors all have a cyclic tetra-amine structure combined with either one or two quinoline or 8-hydroxyquinoline units, influencing their properties and interactions.
  • The study showed that Zn(II) forms more stable complexes with some receptors, while Cd(II) complexes benefit from better fitting in specific cavities, leading to unique optical behaviors for each metal in their respective complexes.
View Article and Find Full Text PDF

Tuning the Duplex Stability of DNA Oligonucleotides Containing Metal-Mediated Base Pairs of Imidazole-Derived Nucleobases.

Chemistry

December 2024

Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149, Münster, Germany.

Two artificial imidazole-derived nucleobases, Im (3H-imidazo[4,5-f]quinolin-5-ol) and Im (imidazole-4-carboxylate), were introduced into short DNA duplexes to systematically investigate their thermal stability upon metal ion coordination. Metal-mediated base pairs are formed with the 3d metal ions Co, Ni and Zn, as well as with the lanthanoid ions Eu and Sm, which induce a thermal stabilization of up to 8 °C upon binding. The latter are the first lanthanoid-mediated base pairs involving only four donor atoms that result in a significant duplex stabilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!