The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881065 | PMC |
http://dx.doi.org/10.1186/s12951-016-0193-x | DOI Listing |
Commun Biol
January 2025
Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, de Boelelaan 1117, 1018 HV, Amsterdam, The Netherlands.
Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology (LICI), Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, United States. Electronic address:
The tumor microenvironment (TME) consists of complex interactions between cellular and extracellular components, among which the immune system is known to play an integral role in disease progression and response to therapy. Cytokines and chemokines are cell signaling proteins used by immune cells to communicate with each other as well as with other cell types in the body. These proteins control systemic and local immune responses and levels of cytokines/chemokines in the TME have been associated with tumor outcomes.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, 500078 TS, India. Electronic address:
Combination therapies play a pivotal role in cancer treatment due to the intricate nature of the disease. Tubulin, a protein crucial for cellular functions, is a prime target in tumor therapy as it regulates microtubule dynamics. Combining tubulin inhibitors with other different inhibitors as dual targeting inhibitors has shown synergistic anti-tumor effects, amplifying therapeutic outcomes.
View Article and Find Full Text PDFPhytomedicine
January 2025
College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain. Electronic address:
Background: The therapeutic and prognostic outcomes for colorectal cancer (CRC) remain unsatisfactory. Among multiple reported bioactive functionalities of Glycyrrhiza uralensis Fisch. one vital recently reported activity is its therapeutic role against numerous cancers but limited information is available related to its underlying key mechanisms and therapeutically active ingredients, especially against CRC treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!