Novel zero-valent iron-assembled reactor for strengthening anammox performance under low temperature.

Appl Microbiol Biotechnol

Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, People's Republic of China.

Published: October 2016

To further expand the application of anammox biotechnology, a novel zero-valent iron-assembled upflow anaerobic sludge bed reactor was employed to strengthen anammox performance under low temperature and shock load. Packed with sponge iron and polyester sponge, this novel reactor could speed up the recovery of anammox activity in 12 days and improve the adaptability of anammox bacteria at the temperature of 10-15 °C. The high nitrogen loading rate of 1109.2 mg N/L/day could be adapted in 27 days and the new nitrogen pathway under the effect of sponge iron was clarified by batch experiment. Moreover, the real-time quantitative PCR analysis and Illumina MiSeq sequencing verified the dominant status of Candidatus Kuenenia stuttgartiensis and planctomycete KSU-1, as well as demonstrated the positive role of sponge iron on anammox microorganisms' proliferation. The findings might be beneficial to popularize anammox-related processes in municipal and industrial wastewater engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-016-7586-5DOI Listing

Publication Analysis

Top Keywords

sponge iron
12
novel zero-valent
8
zero-valent iron-assembled
8
anammox performance
8
performance low
8
low temperature
8
anammox
6
iron-assembled reactor
4
reactor strengthening
4
strengthening anammox
4

Similar Publications

Coupling of iron-carbon can form a mixotrophic denitrification and is regarded as a promising solution for purifying nitrate-rich agricultural runoff. However, its prevalence and efficacy of the synergistic augmentation of nitrogen elimination and net NO sinks remain crucial knowledge gaps in ecological ditches (eco-ditches). Here, we investigated the underlying variability mechanisms by implementing sponge iron (sFe)-coupled Iris hexagonus (IH)- or Myriophyllum aquaticum (MA)-derived biochar produced via microwave-assisted (MW) pyrolysis and conventional pyrolysis.

View Article and Find Full Text PDF

Targeting ferroptosis pathway becomes a new solution for cisplatin (DDP) resistance in lung adenocarcinoma (LUAD), and further research is required to explore the molecular mechanisms underlying ferroptosis and DDP resistance, providing biotargets for LUAD treatment. In this study, DDP-sensitive A549 cells and DDP-resistant A549/DDP cells were treated with DDP, DDP sensitivity was detected through using CCK-8 method and colony formation assay, ferroptosis-related markers were determined through commercial kits, and the molecular regulatory mechanism was analyzed through methylated RNA immunoprecipitation, RNA pull-down, dual luciferase assay, quantitative real-time polymerase chain reaction and western blotting assay. Results showed that compared to A549 cells, FENDRR was downregulated in A549/DDP cells, and FENDRR increased iron content, labile iron pool, lipid peroxidation, LDH release and ROS levels, accelerating ferroptosis to promote DDP sensitivity.

View Article and Find Full Text PDF

Mussel-inspired oxidized sodium alginate/cellulose composite sponge with excellent shape recovery and antibacterial properties for the efficient control of non-compressible hemorrhage.

Int J Biol Macromol

December 2024

Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China. Electronic address:

Enhancing the hemostatic efficacy and minimizing blood loss in the body has consistently been a primary objective for researchers. This study improved the hemostatic efficacy and tissue adhesion strength of the hemostatic material by augmenting the aldehyde groups in the side chains of sodium alginate. Additionally, it immobilized the aldehyde-modified sodium alginate onto the surface of the hemostatic material through complexation with iron ions, thereby enhancing its antibacterial properties.

View Article and Find Full Text PDF

Understanding the shrinkage behavior of iron ore is crucial for achieving blast furnace (BF) operating efficiency and reducing fuel ratio. This study presents high-temperature reduction load experiments on iron ore, simulating BF conditions. Two new shrinkage behavior models (SAEM-PC and SAEM-S&M) were established by combining the effects of temperature and reduction.

View Article and Find Full Text PDF

Biomimetic superparamagnetic gelatin/chitosan asymmetric fibrous membrane for accelerating wound healing under static magnetic field.

Carbohydr Polym

January 2025

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; School of Medical Science and Engineering, Beihang University, Beijing 100083, China. Electronic address:

The single structure, poor mechanical properties, and low biological activity of wound dressings usually lead to unsatisfactory treatment effects. Gelatin and chitosan possess excellent biofunction, but they lack sufficient mechanical support. Magnetic biomaterials and magnetic fields have shown surprising tissue repair potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!