Cell therapy, to replace lost tissue, is a promising approach for the treatment of various neurodegenerative diseases. Many studies suggest, however, that the percentage of transplanted cells that survive and undergo functional integration remains low as a result of immune rejection, suboptimal precursor cell type, trauma during cell transplantation, toxic compounds released by dying tissues or nutritional deficiencies. We recently developed an ex vivo system to facilitate identification of factors contributing to the death of transplanted neuronal (photoreceptor) cells and compounds that block these toxic effects. In this system, photoreceptor precursor cells (PPCs) are sandwiched between a neurosensory retinal explant and retinal pigment epithelium derived from human embryonic stem cells. Explant medium was collected to identify toxic components and PPC survival was assessed by flow cytometry. We also assessed the potential for AAGP™, a cryopreservative molecule, to improve PPC survival. We identified elevated prostaglandin E2 (PGE2) in the explant medium and demonstrated that AAGP™ reduced PGE2 levels by 2.6-fold. A pro-inflammatory stress assay suggested that this may result from AAGP™ inhibition of cyclo-oxygenase-2 (COX-2) expression. We confirmed that PGE2 reduced the viability of cultured PPCs by 44% and found that the survival rate of PPCs pretreated with AAGP™ was 2.8-fold higher than in untreated PPCs. These data suggest that PGE2 release from necrotic tissue may be one factor that reduces the survival of transplanted precursor cells and that the pro-survival molecule AAGP™ may improve long-term transplanted cell viability. Copyright © 2016 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.2176 | DOI Listing |
Sci Adv
January 2025
Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA.
The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;
A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.
Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Naval Medical University, Shanghai, China.
Myelin is the key structure for high-speed information transmission and is formed by oligodendrocytes (OLs) which are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system. Lipid is the main component of myelin and the role of lipid metabolism-related molecules in myelination attach increasing attention. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediates the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), and its role in myelination draws our interest as LPC is a classical demyelination inducer and PC is a major component of myelin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!