Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122417PMC
http://dx.doi.org/10.18632/oncotarget.9575DOI Listing

Publication Analysis

Top Keywords

prpc
9
prion protein
8
properties human
8
tumor-initiating cells
8
stem cells
8
cells prpc
8
prpc expression
8
proliferation rate
8
cells
6
expression
5

Similar Publications

Topological confinement by a membrane anchor suppresses phase separation into protein aggregates: Implications for prion diseases.

Proc Natl Acad Sci U S A

January 2025

Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany.

Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation.

View Article and Find Full Text PDF

PrPc is expressed in various tumors and is associated with cancer progression, but previous studies have shown conflicting results regarding its relationship with patient prognosis-potentially due to differences in the antibodies used. This study aimed to clarify the relationship between PrPc expression and primary esophageal squamous cell carcinoma (ESCC) and primary hepatocellular carcinoma (HCC) using a novel anti-PrPc antibody, 4AA-m, noted for its high specificity and sensitivity. We used flow cytometry to detect PrPc expression in ESCC and HCC cell lines.

View Article and Find Full Text PDF

Enhanced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from volatile fatty acids by Halomonas sp. YJ01 with 2-methylcitrate cycle.

J Environ Manage

December 2024

School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China. Electronic address:

Volatile fatty acids (VFAs) are suitable substrates for synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), wherein propionate is a precursor of PHBV biosynthesis; however, high concentrations are toxic to bacteria. Therefore, VFAs with suitable ratio are needed. Here, with the ratio of acetate: propionate: butyrate being 1:4:2, the maximum PHBV content and the 3HV content were 46.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu binding to the cellular prion protein (PrP).

View Article and Find Full Text PDF

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!