Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects.

Nanomedicine

Pharmaceutical Sciences and Graduate Center for Toxicology, University of Kentucky, Lexington, KY, USA. Electronic address:

Published: October 2016

This critical review examines in vitro and in vivo evidence for the influence of engineered nanomaterial (ENM) physicochemical properties on their distribution into, and effects on, the nervous system. Nervous system applications of ENMs; exposure routes and potential for uptake; the nervous system and its barriers to ENM uptake; and the mechanisms of uptake into the nervous system and overcoming those barriers are summarized. The findings of English-language publications of studies that included at least two variations of an ENM physicochemical property and reported results of their pharmacokinetic and/or pharmacodynamic interaction with the nervous system that differed as a function of ENM physicochemical property(ies) are summarized in Supplementary Materials. A summary conclusion is drawn for each of the physicochemical properties on the strength of the evidence that it influences ENM-nervous system interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2016.05.007DOI Listing

Publication Analysis

Top Keywords

nervous system
24
physicochemical properties
12
enm physicochemical
12
distribution effects
8
uptake nervous
8
system
7
nervous
6
physicochemical
5
properties engineered
4
engineered nanomaterials
4

Similar Publications

A synchronized event-cue feedback loop integrating a 3D printed wearable flexible sensor-tactor platform.

Biosens Bioelectron

January 2025

Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA; Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA. Electronic address:

Wearable devices designed for the somatosensory system aim to provide event-cue feedback electronics and therapeutic stimulation to the peripheral nervous system. This prompts a neurological response that is relayed back to the central nervous system. Unlike virtual reality tools, these devices precisely target peripheral mechanoreceptors by administering specific stimuli.

View Article and Find Full Text PDF

Purpose: To present a novel bended-needle drainage system in vitreous cavity lavage (VCL) for postoperative vitreous cavity hemorrhage (POVCH).

Methods: This retrospective case series include all patients with POVCH who received VCL with the bended-needle drainage system at ophthalmology department of Peking Union Medical College Hospital from January 2022 to May 2024. Patients adopted a supine position that allows preparation and draping.

View Article and Find Full Text PDF

Distinct tau amyloid assemblies underlie diverse tauopathies but defy rapid classification. Cell and animal experiments indicate tau functions as a prion, as different strains propagated in cells cause unique, transmissible neuropathology after inoculation. Strain amplification requires compatibility of the monomer and amyloid template.

View Article and Find Full Text PDF

Significance of birth in the maintenance of quiescent neural stem cells.

Sci Adv

January 2025

Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.

Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.

View Article and Find Full Text PDF

Amblyopia, a highly prevalent loss of visual acuity, is classically thought to result from cortical plasticity. The dorsal lateral geniculate nucleus (dLGN) has long been held to act as a passive relay for visual information, but recent findings suggest a largely underestimated functional plasticity in the dLGN. However, the cellular mechanisms supporting this plasticity have not yet been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!