By means of spectrophotometric assay we investigated interaction of the dye Congo red (CR) with fibrils of model proteins--hen egg white lysozyme, recombinant human beta2-microglobulin (b2M) and recombinant human transthyretin (TTR). The commercial dye sample was found to contain a significant amount of impurities. Methods for the dye purification are disclosed and CR molar extinction coefficient at 490 nm (ε490) was determined to be 3.3 x 10(4) M(-1) x cm(-1) at pH above 6.0. Formation of the CR-fibril complex results in changes in the dye visible absorption spectrum. According to the data on titration of fibril solutions with excess of the dye, CR binds to lysozyme fibrils at a ratio of about 5 molecules per protein monomer within fibril structure, to b2M fibrils--about 4 molecules per monomer, to TTR fibrils--about 4 molecules per subunit of the protein.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
January 2025
College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
Chitosan, as a natural and environmentally friendly material, has attracted significant attention in the field of water treatment. In this study, a Chitosan/poly (dimethyl diallyl ammonium chloride-co-acrylamide) composite hydrogel (CPDA hydrogel) featuring a semi-interpenetrating network structure was synthesized via free radical copolymerization for the removal of the anionic dye Congo Red (CR) from wastewater. SEM-EDS, FTIR, XPS, TG, Zeta potential, and mercury intrusion porosimetry (MIP) were employed to analyze the physical and chemical changes in the hydrogel before and after adsorption.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
This research aims to design a novel selective and multifunctional adsorbent based on Al/Cu modified hemp fibres as a novel and multifunctional adsorbent for removing different classes of pollutants. The adsorbent, which was widely characterized, was shown to be more effective in removing anionic dyes compared to cationic ones. Among the tested dye, methyl orange was selected to understand how different parameters, such as temperature (20-80°C), contact time, pH (2-12), initial dye concentration (50-300 ppm), salinity and adsorbent dosage (1-10 g/L) affect the removal capacity.
View Article and Find Full Text PDFSci Rep
January 2025
Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
In this research, the degradation of Congo red (CR) dye, as an organic pollutant in water, was investigated using microwave-induced reaction technology. This technology requires a microwave-absorbing catalyst and the 2D TiCT MXene was synthesized for that purpose. The synthesized catalyst was characterized using XRD, SEM, TEM, EDX, BET, and XPS techniques.
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.
The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!